Jump to content

Endoscopic optical coherence tomography imaging: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OCTMGH (talk | contribs)
No edit summary
Tags: Reverted Visual edit
OCTMGH (talk | contribs)
No edit summary
Tags: Reverted Visual edit
Line 20: Line 20:


=== '''Pre-Cardiology One and Two Dimensional OCT''' ===
=== '''Pre-Cardiology One and Two Dimensional OCT''' ===
This section has been included as it is not addressed in the Optical Coherence Tomography Wikipedia page. One dimensional OCT was demonstrated by three groups in 1981 but the technology would go under numerous names including low coherence interferometry (LCI). McDonald appears the first to use swept source reflectometry in 1981 along with Fourier domain. These 1-D OCT were primarily used for assessing optical fibers so was 1-D. Using a similar system, a team led by J. Fujimoto and E. Ippen would successfully image biological tissue with 1 D OCT. Three groups in 1987 would perform 1 dimensional OCT using a diode source and a Michelson interferometer including Danielson et.al., Takeda et.al., and Youngquistet.al. . The first OCT patent appears to be Tanno et al. in Japan in 1990, but not outside Japan. In 1991, David Huang, then a student in Prof. [[James Fujimoto]] laboratory at [[Massachusetts Institute of Technology]], working with Eric Swanson at the MIT Lincoln Laboratory and colleagues at the Harvard Medical School, successfully demonstrated imaging and called the new imaging modality "optical coherence tomography".
This section has been included as it is not addressed in the Optical Coherence Tomography Wikipedia page. One dimensional OCT was demonstrated by three groups in 1981 but the technology would go under numerous names including low coherence interferometry (LCI). McDonald appears the first to use swept source reflectometry in 1981 along with Fourier domain. These 1-D OCT were primarily used for assessing optical fibers so was 1-D. Using a similar system, a team led by J. Fujimoto and E. Ippen would successfully image biological tissue with 1 D OCT. Three groups in 1987 would perform 1 dimensional OCT using a diode source and a Michelson interferometer including Danielson et.al., Takeda et.al., and Youngquistet.al. . The first OCT patent appears to be Tanno et al. in Japan in 1990, but not outside Japan. In 1991, David Huang, then a student in Prof. [[James Fujimoto]] laboratory at [[Massachusetts Institute of Technology]], working with Eric Swanson at the MIT Lincoln Laboratory and colleagues at the Harvard Medical School, successfully demonstrated two dimensional imaging and called the new imaging modality "optical coherence tomography". By 1995 paper, in vivo imaging was performed of the retina, layers were clearly defined at 10 µm resolution, the beam was now scanned rather than moving the sample, and the acquisition rate was 3 seconds.  The greater delineation of layers between 1991 and 1995 is due in large part to superior dynamic range, but the specific values are not available from the paper.  Advanced Ophthalmic Devices Incorporated commercialized Ophthalmic OCT in 1992 principally by Swanson and Fujimoto.



=== In cardiology ===
=== In cardiology ===

Revision as of 15:13, 8 November 2023

Intracoronary optical coherence tomography
Example of intracoronary optical coherence tomography (OCT) image of atherosclerosis. Between 6 and 8 o'clock it is possible to observe a fibrocalcific atherosclerotic plaque.

Intracoronary optical coherence tomography (OCT) (or, more generally, intravascular optical coherence tomography) is a catheter-based imaging application of optical coherence tomography. Currently prospective trials demonstrate OCT alters morbidity and/or mortality in coronary stenting and cervical cancer screening as discussed below.

OCT has been shown to impact morbidity/mortality over a large patient population, unlike any other OCT application. Application in cardiology is not a direct extension of the Ophthalmologic systems as it required overcoming many distinct barriers. These included finding an optical window to increase penetration (1300 nm), developing a previously undescribed catheter/endoscopic system, higher power, micron scale matching of histopathology with images, and increased acquisition rate. Its application in other non-transparent tissue will also be discussed as the systems are distinct from Ophthalmology. Analogous to intravascular ultrasound, intracoronary OCT uses a catheter to deliver and collect near infrared light (e.g., 1,300 nm, not ophthamologic systems at 830 nm) to create cross-sectional images of the artery lumen and wall. Intracoronary OCT creates images at a resolution of approximately 15 micro-meters, an order of magnitude improved resolution with respect to intravascular ultrasound and X-ray coronary angiogram.[1] OCT basic and clinical research has lagged since 2000. The first prospective trials assessing morbidity and mortality are just coming out in 2023. Basic studies are not just needed for adjuvants like elastography and PS-OCT, but currently studies have not been done to characterize a necrotic core which is critical for both PCI as well as identifying vulnerable plaque. The radiographic term 'lipid plaque' is used, which is not a necrotic core, and there are little histologic correlated to what this represents.

Theory

OCT will be described here from a non-physical scientist standpoint. OCT is analogous to ultrasound, measuring the backreflection of infrared light rather than sound. The time for the light to be relfected back is used to measure distances. The backreflection intensity with depth plots the structure of the tissue. An A-scan can be taken (1-dimension) or the beam scanned to produce two and three dimensional data sets. Due the high speed associated with light propagation, the backreflection time can not be measured electronically. Therefore a technique known as interferometry is used which a reference arm. Interferometry is described elsewhere in detail.[2] A YouTube video can be found at OCT Basic Physics I: Axial Resolution.

OCT is generally described as time domain (TD-OCT) and Fourier based OCT (SS-OCT/FD-OCT/Spectral OCT). TD-OCT can be considered like ultrasound, directly measuring the time for the photon to go and come back to assess distance. The Fourier based are indirect. It can be viewed they collect all the frequencies from an A-scan and using Fourier math you indirectly get the backreflection with depth. A superficial explanation can be found on the you tube video OCT Basics: TDOCT versus SSOCT. More detailed descriptions can be found elsewhere.[3] TD-OCT and Fourier both existed by in 1981. TD-OCT was initially used in cardiology but frame rates at the time were too slow. The ultimate max acquisition rate is unknown as work as essentially stopped. Fourier are faster but we believe have much worse dynamic range, which can effect imaging quality such as penetration.[3] But some groups dispute this, though they appear to be talking about SNR and not dynamic range.[4]

OCT needs to image at 1300 nm in cardiovascular tissue, but those could damage the eye. On the other hand, ophthalmologic systems image at 830 nm, which would only image a few hundred micron in arteries. The eye effectively have no scattering, but imaging to the retina is over cm, so water absorption becomes significant. The coronary needs a wavelength with low scattering and preferably low absorption (though imaging is only a few mm). The light also had to have a broad bandwidth, significant power at high acquisition rates, and a Gaussian (Bell shaped spectrum).[5]

History In Cardiology

Pre-Cardiology One and Two Dimensional OCT

This section has been included as it is not addressed in the Optical Coherence Tomography Wikipedia page. One dimensional OCT was demonstrated by three groups in 1981 but the technology would go under numerous names including low coherence interferometry (LCI). McDonald appears the first to use swept source reflectometry in 1981 along with Fourier domain. These 1-D OCT were primarily used for assessing optical fibers so was 1-D. Using a similar system, a team led by J. Fujimoto and E. Ippen would successfully image biological tissue with 1 D OCT. Three groups in 1987 would perform 1 dimensional OCT using a diode source and a Michelson interferometer including Danielson et.al., Takeda et.al., and Youngquistet.al. . The first OCT patent appears to be Tanno et al. in Japan in 1990, but not outside Japan. In 1991, David Huang, then a student in Prof. James Fujimoto laboratory at Massachusetts Institute of Technology, working with Eric Swanson at the MIT Lincoln Laboratory and colleagues at the Harvard Medical School, successfully demonstrated two dimensional imaging and called the new imaging modality "optical coherence tomography". By 1995 paper, in vivo imaging was performed of the retina, layers were clearly defined at 10 µm resolution, the beam was now scanned rather than moving the sample, and the acquisition rate was 3 seconds.  The greater delineation of layers between 1991 and 1995 is due in large part to superior dynamic range, but the specific values are not available from the paper.  Advanced Ophthalmic Devices Incorporated commercialized Ophthalmic OCT in 1992 principally by Swanson and Fujimoto.

In cardiology

In 1993, after OCT had been unsuccessful in imaging non-transparent tissue, Dr. Mark Brezinski proposed imaging at 1300 nm rather than 830 nm used in the eye( after analyzing a 1989 scattering/absorption study by Parsa et.al in liver).[6] The goal was to image vulnerable plaque (where better than 20 µm resolution is needed based on histology and stress studies) and guide stent placement. A collaboration was established between Dr. Brezinski and Professor James Fujimoto and they successfully imaged artery as well as other scattering tissue in 1996 with students Micheal Hee and postdoctoral fellow Joseph Izatt generated the first images with Dr. Brezinski (initially chicken and fish).[2] The first demonstration of endoscopic OCT was reported in 1997, by researchers in James Fujimoto laboratory at Massachusetts Institute of Technology and the Mark Brezinski Laboratory at Massachusetts General Hospital. Other team members include pathologist James Southern MD, PhD, student Guillermo James Tearney, student Micheal Hee, post-doctoral fellow Joe Izatt, and post-doctoral fellow Brett Bouma. The superior resolution to IVUS was demonstrated.[7] The first TD-OCT imaging catheter and system was commercialized by LightLab Imaging, Inc., a company based in Massachusetts formed in 1997 by Fujimoto, Swanson, and Brezinski. Technical advances over the ophthamologic system were needed beyond wavelength, particularly the catheter and acquisition rate. The most important technical advance for cardiology and other nontransparent tissue was likely the catheter/endoscope. The fiber optic catheter/endoscope required rapid alignment of two optical fibers with 8 µm cores (one rotating) across free space. The first intravascular imaging was in rabbit but blood needed to be pushed out of the field.[8] Index matching was proposed to make the red cells invisible to infrared light.[9] The initial few years of the millineum did not see in vivo human imaging as only a few groups were capable. The Brezinski and Fujimoto groups could not because of COI, owning Lightlab and IP. Lightlab had not moved this forward. The Tearney and Bouma group finally achieved it in 2003 looking at stents.[10] The last two decade have seen consensus groups and registries but a lack of prospective trials with MACE endpoints for unclear reasons.[11] Part was related to only several groups having access to cardiovascular systems early (Brezinski at Harvard, Fujimoto at MIT, LightLab, and former MIT trainees at MGH (Bouma/Tearney), with at least the first two having COI for intravascular studies. A study in 2012 concluded IVUS led to better stent expansion, but experience with OCT may have been limited.[12] This conclusion is supported by more recent studies.[13] A study in 2015 showed OCT influenced physician decisions, but it is unclear if their changed decision was for the better or worse[11] Studies on plaque healing had conflicting results, though not surprising being primarily registry studies with little basic work on what a healed plaque (or even thrombus) appear on OCT.[14][15] Some authors have found these registry data is core length in ACS patients.[16] A major change occurred in 2023 with prospective trials, as Abbott acquiring LightLab in 2017. In 2023, after double blind prospective trails were ultimately performed demonstrating morbidity and mortality benefits "Among patients with complex coronary-artery bifurcation lesions, OCT-guided PCI was associated with a lower incidence of MACE at 2 years than angiography-guided PCI."[17] Several other studies are expected out in 2023.

Now that prospective trials are being done, a substantial amount of basic work is needed. Currently plaques with necrotic cores are not reliably identified. Issues whether OCT currently can identify inflammatory cells or microvessels, where there is a paucity of studies. Polarizations sensitive OCT (PS-OCT), OCT elastography, and photon-phonon tagging are just some of the areas which need to be research. Till then, links of plaque characterization to phenomena such as no-reflow are lacking.

OCT visualization of arteries inner lumen can help physician to understand morphology and plan treatment accordingly. OCT has been used as guidance for angioplasty intervention of coronary arteries, including optimization of stent implantation.

OCT Cardiovascular Technology

The technology of most interest to clinicians and non-physicians are the catheter, technology for faster imaging (SS-OCT versus TD-OCT), the light source, and the potential for a guidewire. The most critical technological advance (besides identifying the optimal wavelength) was the catheter. The fiber optic catheter/endoscope required rapid alignment of two optical fibers with 8 µm cores (one rotating) across free space. The fiber itself is 120 microns so can be made into a guidewire unlike IVUS. The distal end has a focusing component (GRIN lens typically) and light directing component (usually prism). The fiber is fragile so needs external casing as a recent study using a Lightlab catheter in a joint had a high breakage rate.[18] The distal end generally Acquisition rates advances will be discussed, but these were generally based on prior art.

OCT Cardiovascular Basic Science Research

The field, and current clinical trials, are limited by the need for more basic research, particularly characterizing plaque necrotic cores. A core to much of the basic research done and to be done is micron scale matching of OCT images to histopathology, covered in the Optical Coherence Tomography: Principles and Applications chapter 12.[5] There are only a small number of groups which have this capability. For the retina, micron scale matching was not performed but as prospective trials are being finally considered, more refined interpretation of images is needed.[19] Micron scale matching was performed in the first OCT artery paper, where pathologist James Southern MD,PhD of MGH played a major role.[2]

Medical uses

Data published in late 2016 showed that approximately 100,000 intracoronary optical coherence tomography procedures are performed every year, and its adoption is rapidly growing at a rate of ~ 20% every year. As stated in the previous section, 2023 produced double blind prospective trials showing morbidity and mortality benefits.

Assessment of artery lumen morphology is the cornerstone of intravascular imaging criteria to evaluate disease severity and guide intervention. The high-resolution of OCT imaging allows to assess with high accuracy vessel lumen area, wall microstructure, intracoronary stent apposition and expansion. OCT has an improved ability with respect to intravascular ultrasound to penetrate and delineate calcium in the vessel wall that makes it well suited to guide complex interventional strategies in vessels with superficial calcification. OCT has the capability of visualize coronary plaque erosion and fibrotic caps overlying atheromas.[2]

Safety

Safety of intravascular imaging, including intracoronary OCT and intravascular ultrasound, has been investigated by several studies. Recent clinical trials reported a very low rate of self-limiting, minor complications on over 3,000 patients where in all cases no harm or prolongation of hospital stay was observed. Intracoronary optical coherence tomography was demonstrated to be safe among heterogeneous groups of patients presenting varying clinical setting.[20]

Equipment

State-of-the-art intracoronary optical coherence tomography uses a swept-source laser to make OCT images at high-speed (i.e., approximately 80,000 kHz - A-scan lines per second) to complete acquisition of a 3D OCT volume of coronary segments in a few-seconds.[21] The first intravascular FD-OCT was introduced to the market in 2009 (EU and Asia) and in 2012 (US). In 2018, two intracoronary OCT catheters are clinically available for use in the coronary arteries, having a size in diameter between 2.4F and 2.7F. The basic principle of FD-OCT, is the use of interferometric techniques to measure the time-of-flight of light, emitted and collected from the imaging catheter to create cross-sectional images of arterial lumen and vessel wall.[citation needed]

The axial resolution of state-of-the-art commercial systems is less than 20 micrometers, which is decoupled from the catheter lateral resolution. The highest resolution of OCT allows for the in vivo imaging of vessel microstructural features at an unprecedented level, enabling visualization of vessel wall atherosclerosis, pathology, and interaction with therapeutic devices at a microscopic level.[citation needed]

See also

References

  1. ^ Bezerra HG, Costa MA, Guagliumi G, Rollins AM, Simon DI (November 2009). "Intracoronary optical coherence tomography: a comprehensive review clinical and research applications". JACC. Cardiovascular Interventions. 2 (11): 1035–1046. doi:10.1016/j.jcin.2009.06.019. PMC 4113036. PMID 19926041.
  2. ^ a b c d Brezinski ME, Tearney GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, et al. (March 1996). "Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology". Circulation. 93 (6): 1206–1213. doi:10.1161/01.CIR.93.6.1206. PMID 8653843.
  3. ^ a b Zheng K, Liu B, Huang C, Brezinski ME (November 2008). "Experimental confirmation of potential swept source optical coherence tomography performance limitations". Applied Optics. 47 (33): 6151–6158. Bibcode:2008ApOpt..47.6151Z. doi:10.1364/AO.47.006151. PMC 2640108. PMID 19023378.
  4. ^ Choma M, Sarunic M, Yang C, Izatt J (September 2003). "Sensitivity advantage of swept source and Fourier domain optical coherence tomography". Optics Express. 11 (18): 2183–2189. Bibcode:2003OExpr..11.2183C. doi:10.1364/OE.11.002183. PMID 19466106.
  5. ^ a b Brezinski ME (2006). Optical Coherence Tomography: Principles and Applications. Amsterdam, Boston: Academic Press. ISBN 978-0-12-133570-0.
  6. ^ Parsa P, Jacques SL, Nishioka NS (June 1989). "Optical properties of rat liver between 350 and 2200 nm". Applied Optics. 28 (12): 2325–2330. Bibcode:1989ApOpt..28.2325P. doi:10.1364/AO.28.002325. PMID 20555519.
  7. ^ Brezinski ME, Tearney GJ, Weissman NJ, Boppart SA, Bouma BE, Hee MR, et al. (May 1997). "Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound". Heart. 77 (5): 397–403. doi:10.1136/hrt.77.5.397. PMC 484757. PMID 9196405.
  8. ^ Fujimoto JG, Boppart SA, Tearney GJ, Bouma BE, Pitris C, Brezinski ME (August 1999). "High resolution in vivo intra-arterial imaging with optical coherence tomography". Heart. 82 (2): 128–133. doi:10.1136/hrt.82.2.128. PMC 1729132. PMID 10409522.
  9. ^ Brezinski M, Saunders K, Jesser C, Li X, Fujimoto J (April 2001). "Index matching to improve optical coherence tomography imaging through blood". Circulation. 103 (15): 1999–2003. doi:10.1161/01.CIR.103.15.1999. PMID 11306530. S2CID 40845181.
  10. ^ Bouma BE, Tearney GJ, Yabushita H, Shishkov M, Kauffman CR, DeJoseph Gauthier D, et al. (March 2003). "Evaluation of intracoronary stenting by intravascular optical coherence tomography". Heart. 89 (3): 317–320. doi:10.1136/heart.89.3.317. PMC 1767586. PMID 12591841.
  11. ^ a b Wijns W, Shite J, Jones MR, Lee SW, Price MJ, Fabbiocchi F, et al. (December 2015). "Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study". European Heart Journal. 36 (47): 3346–3355. doi:10.1093/eurheartj/ehv367. PMC 4677272. PMID 26242713.
  12. ^ Habara M, Nasu K, Terashima M, Kaneda H, Yokota D, Ko E, et al. (April 2012). "Impact of frequency-domain optical coherence tomography guidance for optimal coronary stent implantation in comparison with intravascular ultrasound guidance". Circulation. Cardiovascular Interventions. 5 (2): 193–201. doi:10.1161/CIRCINTERVENTIONS.111.965111. PMID 22456026. S2CID 3025748.
  13. ^ Wijns, William; Shite, Junya; Jones, Michael R.; Lee, Stephen W.-L.; Price, Matthew J.; Fabbiocchi, Franco; Barbato, Emanuele; Akasaka, Takashi; Bezerra, Hiram; Holmes, David (2015-12-14). "Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study". European Heart Journal. 36 (47): 3346–3355. doi:10.1093/eurheartj/ehv367. ISSN 0195-668X. PMC 4677272. PMID 26242713.
  14. ^ Vergallo R, Porto I, D'Amario D, Annibali G, Galli M, Benenati S, et al. (April 2019). "Coronary Atherosclerotic Phenotype and Plaque Healing in Patients With Recurrent Acute Coronary Syndromes Compared With Patients With Long-term Clinical Stability: An In Vivo Optical Coherence Tomography Study". JAMA Cardiology. 4 (4): 321–329. doi:10.1001/jamacardio.2019.0275. PMC 6484796. PMID 30865212.
  15. ^ Yin WJ, Jing J, Zhang YQ, Tian F, Zhang T, Zhou SS, Chen YD (August 2021). "Association between non-culprit healed plaque and plaque progression in acute coronary syndrome patients: an optical coherence tomography study". Journal of Geriatric Cardiology. 18 (8): 631–644. doi:10.11909/j.issn.1671-5411.2021.08.001. PMC 8390931. PMID 34527029.
  16. ^ Brezinski ME (April 2019). "Comparing the Risk Factors of Plaque Rupture and Failed Plaque Healing in Acute Coronary Syndrome". JAMA Cardiology. 4 (4): 329–331. doi:10.1001/jamacardio.2019.0312. PMID 30865209. S2CID 76667373.
  17. ^ Holm NR, Andreasen LN, Neghabat O, Laanmets P, Kumsars I, Bennett J, et al. (October 2023). "OCT or Angiography Guidance for PCI in Complex Bifurcation Lesions". The New England Journal of Medicine. 389 (16): 1477–1487. doi:10.1056/NEJMoa2307770. PMID 37634149. S2CID 261231045.
  18. ^ Martin, S.; Rashidifard, C.; Norris, D.; Goncalves, A.; Vercollone, C.; Brezinski, M.E. (December 2022). "Minimally Invasive Polarization Sensitive Optical Coherence Tomography (PS-OCT) for assessing Pre-OA, a pilot study on technical feasibility". Osteoarthritis and Cartilage Open. 4 (4): 100313. doi:10.1016/j.ocarto.2022.100313. ISSN 2665-9131. PMC 9576017. PMID 36263247.
  19. ^ Wu Z, Pfau M, Blodi BA, Holz FG, Jaffe GJ, Liakopoulos S, et al. (January 2022). "OCT Signs of Early Atrophy in Age-Related Macular Degeneration: Interreader Agreement: Classification of Atrophy Meetings Report 6". Ophthalmology. Retina. 6 (1): 4–14. doi:10.1016/j.oret.2021.03.008. PMID 33766801. S2CID 242716835.
  20. ^ van der Sijde JN, Karanasos A, van Ditzhuijzen NS, Okamura T, van Geuns RJ, Valgimigli M, et al. (April 2017). "Safety of optical coherence tomography in daily practice: a comparison with intravascular ultrasound". European Heart Journal. Cardiovascular Imaging. 18 (4): 467–474. doi:10.1093/ehjci/jew037. PMID 26992420.
  21. ^ Yun SH, Tearney G, de Boer J, Bouma B (November 2004). "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts". Optics Express. 12 (23): 5614–5624. Bibcode:2004OExpr..12.5614Y. doi:10.1364/opex.12.005614. PMC 2713045. PMID 19488195.