Jump to content

Gauss–Hermite quadrature: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Abacenis (talk | contribs)
Line 53: Line 53:
* For tables of Gauss-Hermite abscissae and weights up to order ''n'' = 32 see http://www.efunda.com/math/num_integration/findgausshermite.cfm.
* For tables of Gauss-Hermite abscissae and weights up to order ''n'' = 32 see http://www.efunda.com/math/num_integration/findgausshermite.cfm.
* [http://people.sc.fsu.edu/~jburkardt/cpp_src/gen_hermite_rule/gen_hermite_rule.html Generalized Gauss–Hermite quadrature], [[free software]] in C++, Fortran, and Matlab
* [http://people.sc.fsu.edu/~jburkardt/cpp_src/gen_hermite_rule/gen_hermite_rule.html Generalized Gauss–Hermite quadrature], [[free software]] in C++, Fortran, and Matlab
* [http://www.bayesian-inference.com/software LaplacesDemon]: A complete environment for Bayesian inference, has the IterativeQuadrature function


{{DEFAULTSORT:Gauss-Hermite quadrature}}
{{DEFAULTSORT:Gauss-Hermite quadrature}}

Revision as of 16:51, 22 February 2014

Weights versus xi for four choices of n

In numerical analysis, Gauss–Hermite quadrature is a form of Gaussian quadrature for approximating the value of integrals of the following kind:

In this case

where n is the number of sample points used. The xi are the roots of the (physicists' version of the) Hermite polynomial Hn(x) (i = 1,2,...,n), and the associated weights wi are given by [1]


Example with change of variable

Let's take a function h which variable y is Normally distributed . The expectation of h corresponds to the following integral:

As this doesn't exactly correspond to the Hermite polynomial, we need a change of variable:

Coupled with the integration by substitution, we obtain:

leading to:

References

  1. ^ Abramowitz, M & Stegun, I A, Handbook of Mathematical Functions, 10th printing with corrections (1972), Dover, ISBN 978-0-486-61272-0. Equation 25.4.46.
  • Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), § 3.5 "Quadrature: Gauss–Hermite Formula", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 {{citation}}: Check |contribution-url= value (help).
  • Shao, T. S.; Chen, T. C.; Frank, R. M. (1964). "Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials". Math. Comp. 18 (88): 598–616. doi:10.1090/S0025-5718-1964-0166397-1. MR 0166397.
  • Steen, N. M.; Byrne, G. D.; Gelbard, E. M. (1969). "Gaussian quadratures for the integrals int_0^infty exp(-x^2) f(x) dx". Math. Comp. 23 (107): 661–671. doi:10.1090/S0025-5718-1969-0247744-3. MR 0247744.
  • Shizgal, B. (1981). "A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems". J. Comp. Phys. 41: 309–328. doi:10.1016/0021-9991(81)90099-1.
  • Mathar, Richard J. (2013). "Gauss-Laguerre and Gauss-Hermite Quadrature on 64, 96 and 128 Nodes".