Jump to content

Standard atmosphere (unit): Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 651727150 by Johnuniq (talk)
m Revert and added citation.
Line 1: Line 1:
{{Redirect|Atmospheres|the composition by György Ligeti|Atmosphères|the U.S. weather program|Atmospheres (TV series)}}
{{Redirect|Atmospheres|the composition by György Ligeti|Atmosphères|the U.S. weather program|Atmospheres (TV series)}}
The '''standard atmosphere''' (symbol: '''atm''') is an international reference unit of [[pressure]], or [[Newton (unit)|force]] per [[area]], defined as 100 kilo[[Pascal (unit)|Pascals]]. It represents the average pressure of the earth's atmosphere at the latitude and altitude of [[Paris]], France.
The '''standard atmosphere''' (symbol: '''atm''') is an international reference unit of [[pressure]], or [[Newton (unit)|force]] per [[area]], defined as 100 kilo[[Pascal (unit)|Pascals]]. It represents the average pressure of the earth's atmosphere at the latitude and altitude of [[Paris]], France.[http://www.eoearth.org/view/article/155345/]


==History==
==History==
Line 13: Line 13:
{{Pressure Units}}
{{Pressure Units}}


A pressure of 1 atm can traditionally also be stated as:
A pressure of 1 atm traditionally was stated as:


:≡1.01325 [[bar (unit)|bar]]
:≡1.01325 [[bar (unit)|bar]]
Line 36: Line 36:
==Other applications==
==Other applications==


[[Scuba diver]]s and others use the word ''atmosphere'' and "atm" in relation to pressures that are relative to mean atmospheric pressure at sea level (1.013 bar). For example, a partial pressure of oxygen is calibrated typically using air at sea level, so is expressed in units of atm.
[[Scuba diver]]s and others use the word ''atmosphere'' and "atm" in relation to pressures that are relative to mean atmospheric pressure at sea level (1 bar). For example, a partial pressure of oxygen is calibrated typically using air at sea level, so is expressed in units of atm.


The old European unit [[technical atmosphere]] (at) is roughly equal to the gauge pressure under 10 m of water; 1 at = 98066.5 Pa.
The old European unit [[technical atmosphere]] (at) is roughly equal to the gauge pressure under 10 m of water; 1 at = 98066.5 Pa.

Revision as of 21:33, 24 March 2015

The standard atmosphere (symbol: atm) is an international reference unit of pressure, or force per area, defined as 100 kiloPascals. It represents the average pressure of the earth's atmosphere at the latitude and altitude of Paris, France.[1]

History

In 1954 the 10th Conférence Générale des Poids et Mesures (CGPM) adopted standard atmosphere for general use and affirmed its definition of being precisely equal to 1,013,250 dynes per square centimetre (101325 Pa) .[1] This value was intended to represent the mean atmospheric pressure at mean sea level at the latitude of Paris, France, and as a practical matter, truly reflects the mean sea level pressure for many of the industrialized nations (those with latitudes similar to Paris).

In chemistry, the original definition of “Standard Temperature and Pressure” (STP) was a reference temperature of 0 °C (273.15 K) and pressure of 101.325 kPa (1 atm).

However, in 1982, the International Union of Pure and Applied Chemistry (IUPAC) recommended that for the purposes of specifying the physical properties of substances, “the standard pressure” should be defined as precisely 100 kPa (1 bar)*.[2]

Pressure units and equivalencies

Pressure units
Pascal Bar Technical atmosphere Standard atmosphere Torr Pound per square inch
(Pa) (bar) (at) (atm) (Torr) (lbf/in2)
1 Pa 1 Pa = 10−5 bar 1 Pa = 1.0197×10−5 at 1 Pa = 9.8692×10−6 atm 1 Pa = 7.5006×10−3 Torr 1 Pa = 0.000145037737730 lbf/in2
1 bar 105 = 1.0197 = 0.98692 = 750.06 = 14.503773773022
1 at 98066.5 0.980665 0.9678411053541 735.5592401 14.2233433071203
1 atm 101325 1.01325 1.0332 760 14.6959487755142
1 Torr 133.322368421 0.001333224 0.00135951 1/7600.001315789 0.019336775
1 lbf/in2 6894.757293168 0.068947573 0.070306958 0.068045964 51.714932572

A pressure of 1 atm traditionally was stated as:

≡1.01325 bar
≡ 101325 pascal (Pa) or 101.325 kilopascal (kPa)
≡ 1013.25 millibars (mbar, also mb)
≡ 760 torr [B]
≈ 760.001 mm-Hg, 0 °C, subject to revision as more precise measurements of mercury’s density become available [B, C]
≈ 29.9213 in-Hg, 0 °C, subject to revision as more precise measurements of mercury’s density become available [C]
≈ 1.033 227 452 799 886 kgf/cm²
≈ 1.033 227 452 799 886 technical atmosphere
≈ 1033.227 452 799 886 cm–H2O, 4 °C [A]
≈ 406.782 461 732 2385 in–H2O, 4 °C [A]
≈ 14.695 948 775 5134 pounds-force per square inch (psi)
≈ 2116.216 623 673 94 pounds-force per square foot (psf)
= 1 ata. The ata unit is used in place of atm to indicate that the pressure shown is the total ambient pressure on the system being calculated or measured.[3] For example, for underwater pressures a pressure of 3.1 ata would mean that the 1 atm of the air above water is included in this value.
Notes:
A This is the customarily accepted value for cm–H2O, 4 °C. It is precisely the product of 1 kg-force per square centimeter (one technical atmosphere) times 1.013 25 (bar/atmosphere) divided by 0.980 665 (one gram-force). It is not accepted practice to define the value for water column based on a true physical realization of water (which would be 99.997 495% of this value because the true maximum density of Vienna Standard Mean Ocean Water is 0.999 974 95 kg/l at 3.984 °C). Also, this “physical realization” would still ignore the 8.285 cm–H2O reduction that would actually occur in a true physical realization due to the vapor pressure over water at 3.984 °C.
B Torr and mm-Hg, 0°C are often taken to be identical. For most practical purposes (to 5 significant digits), they are interchangeable.
C NIST value of 13.595 078(5) g/ml assumed for the density of Hg at 0 °C

Other applications

Scuba divers and others use the word atmosphere and "atm" in relation to pressures that are relative to mean atmospheric pressure at sea level (1 bar). For example, a partial pressure of oxygen is calibrated typically using air at sea level, so is expressed in units of atm.

The old European unit technical atmosphere (at) is roughly equal to the gauge pressure under 10 m of water; 1 at = 98066.5 Pa.

See also

References