User:Denevedr/sandbox: Difference between revisions
No edit summary |
Added References, Bibliography, and External links. Will add more, but I am about to change my editing mode and want to ensure I save my progress. |
||
Line 52: | Line 52: | ||
* [[Harmonic analysis]] |
* [[Harmonic analysis]] |
||
* [[One-dimensional periodic case]] |
* [[One-dimensional periodic case]] |
||
* [[Rigid rotor|Rigid Rotor]] |
|||
t |
|||
== References[edit] == |
|||
# ^ [[Particle in a box#cite ref-Davies4 1-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Davies4 1-1|<sup>'''''b'''''</sup>]] [[Particle in a box#cite ref-Davies4 1-2|<sup>'''''c'''''</sup>]] [[Particle in a box#cite ref-Davies4 1-3|<sup>'''''d'''''</sup>]] [[Particle in a box#cite ref-Davies4 1-4|<sup>'''''e'''''</sup>]] Davies, p.4 |
|||
# '''[[Particle in a box#cite ref-2|Jump up^]]''' Actually, any constant, finite potential can be specified within the box. This merely shifts the energies of the states by . |
|||
# '''[[Particle in a box#cite ref-Davies1 3-0|Jump up^]]''' Davies, p. 1 |
|||
# ^ [[Particle in a box#cite ref-Bransden157 4-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Bransden157 4-1|<sup>'''''b'''''</sup>]] Bransden and Joachain, p. 157 |
|||
# ^ [[Particle in a box#cite ref-Davies5 5-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Davies5 5-1|<sup>'''''b'''''</sup>]] Davies p. 5 |
|||
# ^ [[Particle in a box#cite ref-Bransden158 6-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Bransden158 6-1|<sup>'''''b'''''</sup>]] Bransden and Joachain, p.158 |
|||
# ^ [[Particle in a box#cite ref-Majernik1997 7-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Majernik1997 7-1|<sup>'''''b'''''</sup>]] |
|||
# '''[[Particle in a box#cite ref-Majernik1998 8-0|Jump up^]]''' |
|||
# ^ [[Particle in a box#cite ref-Bransden159 9-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Bransden159 9-1|<sup>'''''b'''''</sup>]] [[Particle in a box#cite ref-Bransden159 9-2|<sup>'''''c'''''</sup>]] Bransden and Joachain, p. 159 |
|||
# '''[[Particle in a box#cite ref-Davies15 10-0|Jump up^]]''' Davies, p. 15 |
|||
# ^ [[Particle in a box#cite ref-Todd Wimpfheimer 2015, pp. 19-21 11-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Todd Wimpfheimer 2015, pp. 19-21 11-1|<sup>'''''b'''''</sup>]] Todd Wimpfheimer, A Particle in a Box Laboratory Experiment Using Everyday Compounds, Journal of Laboratory Chemical Education, Vol. 3 No. 2, 2015, pp. 19-21. [[Digital object identifier|doi]]:[https://doi.org/10.5923%2Fj.jlce.20150302.01 10.5923/j.jlce.20150302.01]. |
|||
# ^ [[Particle in a box#cite ref-:0 12-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-:0 12-1|<sup>'''''b'''''</sup>]] |
|||
# ^ [[Particle in a box#cite ref-:1 13-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-:1 13-1|<sup>'''''b'''''</sup>]] [[Particle in a box#cite ref-:1 13-2|<sup>'''''c'''''</sup>]] |
|||
# '''[[Particle in a box#cite ref-14|Jump up^]]''' P.J. Mohr, B.N. Taylor, and D.B. Newell, "The 2014 CODATA Recommended Values of the Fundamental Physical Constants". This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: [http://physics.nist.gov/constants <nowiki>[1]</nowiki>]. National Institute of Standards and Technology, Gaithersburg, MD 20899. |
|||
# '''[[Particle in a box#cite ref-15|Jump up^]]''' β-Carotene [http://www.sigmaaldrich.com/catalog/product/aldrich/855553?lang=en%C2%AEion=us http://www.sigmaaldrich.com/catalog/product/aldrich/855553?lang=en®ion=us] (accessed Nov 8, 2016). |
|||
# '''[[Particle in a box#cite ref-16|Jump up^]]''' |
|||
# '''[[Particle in a box#cite ref-17|Jump up^]]''' U.S. Patent #3,982,207, issued September 21, 1976, Inventors R. Dingle and C. H. Henry ,"Quantum Effects in Heterostructure Lasers", filed March 7, 1975. |
|||
# '''[[Particle in a box#cite ref-18|Jump up^]]''' |
|||
# ^ [[Particle in a box#cite ref-Inorganic chemistry 19-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Inorganic chemistry 19-1|<sup>'''''b'''''</sup>]] |
|||
# ^ [[Particle in a box#cite ref-Princeton University 20-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Princeton University 20-1|<sup>'''''b'''''</sup>]] [[Particle in a box#cite ref-Princeton University 20-2|<sup>'''''c'''''</sup>]] |
|||
# ^ [[Particle in a box#cite ref-chemed 21-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-chemed 21-1|<sup>'''''b'''''</sup>]] [[Particle in a box#cite ref-chemed 21-2|<sup>'''''c'''''</sup>]] [[Particle in a box#cite ref-chemed 21-3|<sup>'''''d'''''</sup>]] [[Particle in a box#cite ref-chemed 21-4|<sup>'''''e'''''</sup>]] [[Particle in a box#cite ref-chemed 21-5|<sup>'''''f'''''</sup>]] [[Particle in a box#cite ref-chemed 21-6|<sup>'''''g'''''</sup>]] [[Particle in a box#cite ref-chemed 21-7|<sup>'''''h'''''</sup>]] |
|||
# ^ [[Particle in a box#cite ref-openlab 22-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-openlab 22-1|<sup>'''''b'''''</sup>]] [[Particle in a box#cite ref-openlab 22-2|<sup>'''''c'''''</sup>]] [[Particle in a box#cite ref-openlab 22-3|<sup>'''''d'''''</sup>]] [[Particle in a box#cite ref-openlab 22-4|<sup>'''''e'''''</sup>]] [[Particle in a box#cite ref-openlab 22-5|<sup>'''''f'''''</sup>]] |
|||
# ^ [[Particle in a box#cite ref-washington 23-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-washington 23-1|<sup>'''''b'''''</sup>]] [[Particle in a box#cite ref-washington 23-2|<sup>'''''c'''''</sup>]] |
|||
# '''[[Particle in a box#cite ref-Zahn 24-0|Jump up^]]''' |
|||
# ^ [[Particle in a box#cite ref-Medicine 25-0|Jump up to:<sup>'''''a'''''</sup>]] [[Particle in a box#cite ref-Medicine 25-1|<sup>'''''b'''''</sup>]] |
|||
# '''[[Particle in a box#cite ref-26|Jump up^]]''' Alberto, P; Fiolhais, C; Gil, V M S (1996). [https://estudogeral.sib.uc.pt/bitstream/10316/12349/1/Relativistic%20particle%20in%20a%20box.pdf "Relativistic particle in a box"] (PDF). ''European Journal of Physics''. '''17''': 19–24. [[Bibcode]]:[[bibcode:1996EJPh...17...19A|1996EJPh...17...19A]]. [[Digital object identifier|doi]]:[https://doi.org/10.1088%2F0143-0807%2F17%2F1%2F004 10.1088/0143-0807/17/1/004]. |
|||
== Bibliography == |
|||
Levine, I. N. (2000). Quantum Chemistry (5th ed.). Prentice Hall. ISBN 0136855121<ref>{{Cite book|url=https://www.worldcat.org/oclc/41368277|title=Quantum chemistry|last=1937-|first=Levine, Ira N.,|date=2000|publisher=Prentice Hall|isbn=0136855121|edition=5th ed|location=Upper Saddle River, N.J.|oclc=41368277}}</ref> |
|||
{{cite book|title=Quantum mechanics|last1=Bransden|first1=B. H.|last2=Joachain|first2=C. J.|publisher=Pearson Education|year=2000|isbn=0-582-35691-1|edition=2nd|location=Essex}} |
|||
{{cite book|title=The Physics of Low-Dimensional Semiconductors: An Introduction|last=Davies|first=John H.|publisher=Cambridge University Press|year=2006|isbn=0-521-48491-X|edition=6th reprint}} |
|||
{{cite book|title=Introduction to Quantum Mechanics|last=Griffiths|first=David J.|publisher=Prentice Hall|year=2004|isbn=0-13-111892-7|edition=2nd}} |
|||
== External links == |
|||
* [http://scienceworld.wolfram.com/physics/InfiniteSquarePotentialWell.html][http://demonstrations.wolfram.com/TimeDependentSuperpositionOfRigidRotorEigenstates/ Mathematica Demonstration] (Rigid Rotor) |
|||
* [http://www.falstad.com/qmrotator/ Quantum mechanics] java applet simulates rigid rotor (particle in a ring and particle in a sphere as well as other 1-dimensional and 2-dimensional cases. |
|||
* [https://www.youtube.com/watch?v=_ab-OQsY3QU Particle in a ring simulation video] |
|||
{{DEFAULTSORT:Particle In A Ring}} |
{{DEFAULTSORT:Particle In A Ring}} |
||
[[Category:Quantum models]] |
[[Category:Quantum models]] |
Revision as of 16:44, 10 March 2018
In quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring (technically, whose configuration space is the circle ) is
Wave function
Using polar coordinates on the 1-dimensional ring of radius R, the wave function depends only on the angular coordinate, and so
Requiring that the wave function be periodic in with a period (from the demand that the wave functions be single-valued functions on the circle), and that they be normalized leads to the conditions
- ,
and
Under these conditions, the solution to the Schrödinger equation is given by
Energy eigenvalues
The energy eigenvalues are quantized because of the periodic boundary conditions, and they are required to satisfy
- , or
The eigenfunction and eigenenergies are
- where
Therefore, there are two degenerate quantum states for every value of (corresponding to ). Therefore, there are 2n+1 states with energies up to an energy indexed by the number n.
The case of a particle in a one-dimensional ring is an instructive example when studying the quantization of angular momentum for, say, an electron orbiting the nucleus. The azimuthal wave functions in that case are identical to the energy eigenfunctions of the particle on a ring.
The statement that any wavefunction for the particle on a ring can be written as a superposition of energy eigenfunctions is exactly identical to the Fourier theorem about the development of any periodic function in a Fourier series.
This simple model can be used to find approximate energy levels of some ring molecules, such as benzene.
Application
In organic chemistry, aromatic compounds contain atomic rings, such as benzene rings (the Kekulé structure) consisting of five or six, usually carbon, atoms. So does the surface of "buckyballs" (buckminsterfullerene). This ring behaves like a circular waveguide, with the valence electrons orbiting in both directions. To fill all energy levels up to n requires electrons, as electrons have additionally two possible orientations of their spins. This gives exceptional stability ("aromatic"), and is known as the Hückel's rule.
Further in rotational spectroscopy this model may be used as an approximation of rotational energy levels.
See also
t
References[edit]
- ^ Jump up to:a b c d e Davies, p.4
- Jump up^ Actually, any constant, finite potential can be specified within the box. This merely shifts the energies of the states by .
- Jump up^ Davies, p. 1
- ^ Jump up to:a b Bransden and Joachain, p. 157
- ^ Jump up to:a b Davies p. 5
- ^ Jump up to:a b Bransden and Joachain, p.158
- ^ Jump up to:a b
- Jump up^
- ^ Jump up to:a b c Bransden and Joachain, p. 159
- Jump up^ Davies, p. 15
- ^ Jump up to:a b Todd Wimpfheimer, A Particle in a Box Laboratory Experiment Using Everyday Compounds, Journal of Laboratory Chemical Education, Vol. 3 No. 2, 2015, pp. 19-21. doi:10.5923/j.jlce.20150302.01.
- ^ Jump up to:a b
- ^ Jump up to:a b c
- Jump up^ P.J. Mohr, B.N. Taylor, and D.B. Newell, "The 2014 CODATA Recommended Values of the Fundamental Physical Constants". This database was developed by J. Baker, M. Douma, and S. Kotochigova. Available: [1]. National Institute of Standards and Technology, Gaithersburg, MD 20899.
- Jump up^ β-Carotene http://www.sigmaaldrich.com/catalog/product/aldrich/855553?lang=en®ion=us (accessed Nov 8, 2016).
- Jump up^
- Jump up^ U.S. Patent #3,982,207, issued September 21, 1976, Inventors R. Dingle and C. H. Henry ,"Quantum Effects in Heterostructure Lasers", filed March 7, 1975.
- Jump up^
- ^ Jump up to:a b
- ^ Jump up to:a b c
- ^ Jump up to:a b c d e f g h
- ^ Jump up to:a b c d e f
- ^ Jump up to:a b c
- Jump up^
- ^ Jump up to:a b
- Jump up^ Alberto, P; Fiolhais, C; Gil, V M S (1996). "Relativistic particle in a box" (PDF). European Journal of Physics. 17: 19–24. Bibcode:1996EJPh...17...19A. doi:10.1088/0143-0807/17/1/004.
Bibliography
Levine, I. N. (2000). Quantum Chemistry (5th ed.). Prentice Hall. ISBN 0136855121[1]
Bransden, B. H.; Joachain, C. J. (2000). Quantum mechanics (2nd ed.). Essex: Pearson Education. ISBN 0-582-35691-1.
Davies, John H. (2006). The Physics of Low-Dimensional Semiconductors: An Introduction (6th reprint ed.). Cambridge University Press. ISBN 0-521-48491-X.
Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 0-13-111892-7.
External links
- [1]Mathematica Demonstration (Rigid Rotor)
- Quantum mechanics java applet simulates rigid rotor (particle in a ring and particle in a sphere as well as other 1-dimensional and 2-dimensional cases.
- Particle in a ring simulation video