Korteweg–De Vries equation: Difference between revisions
m →Lax pairs: added "commutator" plus wiki hyperlink |
m Added reference to subsection "Lax pair" |
||
Line 10: | Line 10: | ||
==Definition== |
==Definition== |
||
The KdV equation is a [[partial differential equation]] that models (spatially) one-dimensional [[nonlinear]] [[Dispersion relation|dispersive]] [[Time_reversibility|nondissipative]] waves described by a function <math>\phi(x,t)</math> adhering to:{{sfn | Polyanin | Zaitsev | 2003}} |
The KdV equation is a [[partial differential equation]] that models (spatially) one-dimensional [[nonlinear]] [[Dispersion relation|dispersive]] [[Time_reversibility|nondissipative]] waves described by a function <math>\phi(x,t)</math> adhering to:{{sfn | Polyanin | Zaitsev | 2003|loc=Chapter 9.1.1. Korteweg-de Vries Equation}} |
||
:<math>\partial_t \phi + \partial^3_x \phi - 6\, \phi\, \partial_x \phi =0\, \quad x \in \mathbb{R}, \; t \geq 0,</math> |
:<math>\partial_t \phi + \partial^3_x \phi - 6\, \phi\, \partial_x \phi =0\, \quad x \in \mathbb{R}, \; t \geq 0,</math> |
||
Line 87: | Line 87: | ||
\end{align} |
\end{align} |
||
</math> |
</math> |
||
where <math>[\partial_x,\phi]</math> is the [[Commutator#Identities_(ring_theory)|commutator]] such that <math>[\partial_x,\phi]f=f\partial_x\phi</math>. The Lax pair accounts for the infinite number of [[first integrals]] of the KdV equation.{{sfn | Lax | 1968}} |
where <math>[\partial_x,\phi]</math> is the [[Commutator#Identities_(ring_theory)|commutator]] such that <math>[\partial_x,\phi]f=f\partial_x\phi</math>.{{sfn | Polyanin | Zaitsev | 2003|loc=Chapter S.10.1. Lax Pair Method}} The Lax pair accounts for the infinite number of [[first integrals]] of the KdV equation.{{sfn | Lax | 1968}} |
||
In fact, <math>L</math> is the time-independent [[Schrödinger operator]] (disregarding constants) with potential <math>\phi(x,t)</math>. It can be shown that due to this Lax formulation that in fact the eigenvalues do not depend on <math>t</math>.{{sfn | Dunajski | 2009|pp=31-32}} |
In fact, <math>L</math> is the time-independent [[Schrödinger operator]] (disregarding constants) with potential <math>\phi(x,t)</math>. It can be shown that due to this Lax formulation that in fact the eigenvalues do not depend on <math>t</math>.{{sfn | Dunajski | 2009|pp=31-32}} |
||
Line 265: | Line 265: | ||
* {{cite journal | last=Lax | first=Peter D. | title=Integrals of nonlinear equations of evolution and solitary waves | journal=Communications on Pure and Applied Mathematics | volume=21 | issue=5 | date=1968 | issn=0010-3640 | doi=10.1002/cpa.3160210503 | pages=467–490}} |
* {{cite journal | last=Lax | first=Peter D. | title=Integrals of nonlinear equations of evolution and solitary waves | journal=Communications on Pure and Applied Mathematics | volume=21 | issue=5 | date=1968 | issn=0010-3640 | doi=10.1002/cpa.3160210503 | pages=467–490}} |
||
*{{citation|mr=0252826|last1= Miura|first1= Robert M.|last2= Gardner|first2= Clifford S.|last3= Kruskal|first3= Martin D. |author3-link=Martin Kruskal|title=Korteweg–De Vries equation and generalizations. II. Existence of conservation laws and constants of motion|journal= J. Math. Phys. |volume= 9 |year= 1968 |pages=1204–1209|doi=10.1063/1.1664701|bibcode = 1968JMP.....9.1204M|issue=8 }} |
*{{citation|mr=0252826|last1= Miura|first1= Robert M.|last2= Gardner|first2= Clifford S.|last3= Kruskal|first3= Martin D. |author3-link=Martin Kruskal|title=Korteweg–De Vries equation and generalizations. II. Existence of conservation laws and constants of motion|journal= J. Math. Phys. |volume= 9 |year= 1968 |pages=1204–1209|doi=10.1063/1.1664701|bibcode = 1968JMP.....9.1204M|issue=8 }} |
||
* {{cite book | last=Polyanin | first=Andrei D. | last2=Zaitsev | first2=Valentin F. | title=Handbook of Nonlinear Partial Differential Equations | publisher=Chapman and Hall/CRC | publication-place=Boca Raton, Fla | year=2003 | isbn=978-1-58488-355-5 |
* {{cite book | last=Polyanin | first=Andrei D. | last2=Zaitsev | first2=Valentin F. | title=Handbook of Nonlinear Partial Differential Equations | publisher=Chapman and Hall/CRC | publication-place=Boca Raton, Fla | year=2003 | isbn=978-1-58488-355-5}} |
||
9.1.1. Korteweg-de Vries Equation}} |
|||
* {{cite book | last=Vakakis | first=Alexander F. | title=Normal Modes and Localization in Nonlinear Systems | publisher=Springer Science & Business Media | publication-place=Dordrecht ; Boston | year=2002 | isbn=978-0-7923-7010-9}} |
* {{cite book | last=Vakakis | first=Alexander F. | title=Normal Modes and Localization in Nonlinear Systems | publisher=Springer Science & Business Media | publication-place=Dordrecht ; Boston | year=2002 | isbn=978-0-7923-7010-9}} |
||
* {{cite journal | last=Zabusky | first=N. J. | last2=Kruskal | first2=M. D. | title=Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States | journal=Physical Review Letters | volume=15 | issue=6 | year=1965 | issn=0031-9007 | doi=10.1103/PhysRevLett.15.240 | pages=240–243}} |
* {{cite journal | last=Zabusky | first=N. J. | last2=Kruskal | first2=M. D. | title=Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States | journal=Physical Review Letters | volume=15 | issue=6 | year=1965 | issn=0031-9007 | doi=10.1103/PhysRevLett.15.240 | pages=240–243}} |
Revision as of 07:16, 28 June 2024
In mathematics, the Korteweg–De Vries (KdV) equation is a partial differential equation (PDE) which serves as a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an integrable PDE and exhibits many of the expected behaviors for an integrable PDE, such as a large number of explicit solutions, in particular soliton solutions, and an infinite number of conserved quantities, despite the nonlinearity which typically renders PDEs intractable. The KdV can be solved by the inverse scattering method (ISM).[2] In fact, Gardner, Greene, Kruskal and Miura developed the classical inverse scattering method to solve the KdV equation.
The KdV equation was first introduced by Boussinesq (1877, footnote on page 360) and rediscovered by Diederik Korteweg and Gustav de Vries in 1895, who found the simplest solution, the one-soliton solution.[3][4] Understanding of the equation and behavior of solutions was greatly advanced by the computer simulations of Zabusky and Kruskal in 1965 and then the development of the inverse scattering transform in 1967.
Definition
The KdV equation is a partial differential equation that models (spatially) one-dimensional nonlinear dispersive nondissipative waves described by a function adhering to:[5]
where accounts for dispersion and the nonlinear element is an advection term.
For modelling shallow water waves, is the height displacement of the water surface from its equilibrium height.
The constant in front of the last term is conventional but of no great significance: multiplying , , and by constants can be used to make the coefficients of any of the three terms equal to any given non-zero constants.
Soliton solutions
One-soliton solution
Consider solutions in which a fixed wave form (given by ) maintains its shape as it travels to the right at phase speed . Such a solution is given by . Substituting it into the KdV equation gives the ordinary differential equation
or, integrating with respect to ,
where is a constant of integration. Interpreting the independent variable above as a virtual time variable, this means satisfies Newton's equation of motion of a particle of unit mass in a cubic potential
- .
If
then the potential function has local maximum at ; there is a solution in which starts at this point at 'virtual time' , eventually slides down to the local minimum, then back up the other side, reaching an equal height, and then reverses direction, ending up at the local maximum again at time . In other words, approaches as . This is the characteristic shape of the solitary wave solution.
More precisely, the solution is
where stands for the hyperbolic secant and is an arbitrary constant.[6] This describes a right-moving soliton with velocity .
N-soliton solution
There is a known expression for a solution which is an -soliton solution, which at late times resolves into separate single solitons.[7] The solution depends on an decreasing positive set of parameters and a non-zero set of parameters . The solution is given in the form where the components of the matrix are given by
This is derived using the inverse scattering method.
Integrals of motion
The KdV equation has infinitely many integrals of motion, which do not change with time.[8] They can be given explicitly as
where the polynomials are defined recursively by
The first few integrals of motion are:
- the mass
- the momentum
- the energy .
Only the odd-numbered terms result in non-trivial (meaning non-zero) integrals of motion.[9]
Lax pairs
The KdV equation
can be reformulated as the Lax equation
with a Sturm–Liouville operator:
where is the commutator such that .[10] The Lax pair accounts for the infinite number of first integrals of the KdV equation.[11]
In fact, is the time-independent Schrödinger operator (disregarding constants) with potential . It can be shown that due to this Lax formulation that in fact the eigenvalues do not depend on .[12]
Zero-curvature representation
Setting the components of the Lax connection to be the KdV equation is equivalent to the zero-curvature equation for the Lax connection,
Least action principle
The Korteweg–De Vries equation
is the Euler–Lagrange equation of motion derived from the Lagrangian density,
1 |
with defined by
Since the Lagrangian (eq (1)) contains second derivatives, the Euler–Lagrange equation of motion for this field is
2 |
where is a derivative with respect to the component.
A sum over is implied so eq (2) really reads,
3 |
Evaluate the five terms of eq (3) by plugging in eq (1),
Remember the definition , so use that to simplify the above terms,
Finally, plug these three non-zero terms back into eq (3) to see
which is exactly the KdV equation
Long-time asymptotics
It can be shown that any sufficiently fast decaying smooth solution will eventually split into a finite superposition of solitons travelling to the right plus a decaying dispersive part travelling to the left. This was first observed by Zabusky & Kruskal (1965) and can be rigorously proven using the nonlinear steepest descent analysis for oscillatory Riemann–Hilbert problems.[13]
History
The history of the KdV equation started with experiments by John Scott Russell in 1834, followed by theoretical investigations by Lord Rayleigh and Joseph Boussinesq around 1870 and, finally, Korteweg and De Vries in 1895.
The KdV equation was not studied much after this until Zabusky & Kruskal (1965) discovered numerically that its solutions seemed to decompose at large times into a collection of "solitons": well separated solitary waves. Moreover, the solitons seems to be almost unaffected in shape by passing through each other (though this could cause a change in their position). They also made the connection to earlier numerical experiments by Fermi, Pasta, Ulam, and Tsingou by showing that the KdV equation was the continuum limit of the FPUT system. Development of the analytic solution by means of the inverse scattering transform was done in 1967 by Gardner, Greene, Kruskal and Miura.[2][14]
The KdV equation is now seen to be closely connected to Huygens' principle.[15][16]
Applications and connections
The KdV equation has several connections to physical problems. In addition to being the governing equation of the string in the Fermi–Pasta–Ulam–Tsingou problem in the continuum limit, it approximately describes the evolution of long, one-dimensional waves in many physical settings, including:
- shallow-water waves with weakly non-linear restoring forces,
- long internal waves in a density-stratified ocean,
- ion acoustic waves in a plasma,
- acoustic waves on a crystal lattice.
The KdV equation can also be solved using the inverse scattering transform such as those applied to the non-linear Schrödinger equation.
KdV equation and the Gross–Pitaevskii equation
Considering the simplified solutions of the form
we obtain the KdV equation as
or
Integrating and taking the special case in which the integration constant is zero, we have:
which is the special case of the generalized stationary Gross–Pitaevskii equation (GPE)
Therefore, for the certain class of solutions of generalized GPE ( for the true one-dimensional condensate and while using the three dimensional equation in one dimension), two equations are one. Furthermore, taking the case with the minus sign and the real, one obtains an attractive self-interaction that should yield a bright soliton.[citation needed]
Variations
Many different variations of the KdV equations have been studied. Some are listed in the following table.
Name | Equation |
---|---|
Korteweg–De Vries (KdV) | |
KdV (cylindrical) | |
KdV (deformed) | |
KdV (generalized) | |
KdV (generalized) | |
KdV (modified) | |
Gardner equation | |
KdV (modified modified) | |
KdV (spherical) | |
KdV (super) | |
KdV (transitional) | |
KdV (variable coefficients) | |
KdV-Burgers equation | |
non-homogeneous KdV |
See also
- Advection-diffusion equation
- Benjamin–Bona–Mahony equation
- Boussinesq approximation (water waves)
- Cnoidal wave
- Dispersion (water waves)
- Dispersionless equation
- Fifth-order Korteweg–De Vries equation
- Kadomtsev–Petviashvili equation
- KdV hierarchy
- Modified KdV–Burgers equation
- Novikov–Veselov equation
- Schamel equation
- Ursell number
- Vector soliton
Notes
- ^ Zabusky & Kruskal 1965.
- ^ a b Gardner et al. 1967.
- ^ Darrigol 2005, p. 84.
- ^ Korteweg & de Vries 1895.
- ^ Polyanin & Zaitsev 2003, Chapter 9.1.1. Korteweg-de Vries Equation.
- ^ Vakakis 2002, pp. 105–108.
- ^ Dunajski 2009.
- ^ Miura, Gardner & Kruskal 1968.
- ^ Dingemans 1997, p. 733.
- ^ Polyanin & Zaitsev 2003, Chapter S.10.1. Lax Pair Method.
- ^ Lax 1968.
- ^ Dunajski 2009, pp. 31–32.
- ^ Grunert & Teschl 2009.
- ^ Dauxois & Peyrard 2006.
- ^ Chalub & Zubelli 2006.
- ^ Berest & Loutsenko 1997.
References
- Berest, Yuri Y.; Loutsenko, Igor M. (1997). "Huygens' Principle in Minkowski Spaces and Soliton Solutions of the Korteweg-de Vries Equation". Communications in Mathematical Physics. 190 (1): 113–132. arXiv:solv-int/9704012. doi:10.1007/s002200050235. ISSN 0010-3616.
- Boussinesq, J. (1877), Essai sur la theorie des eaux courantes, Memoires presentes par divers savants ` l’Acad. des Sci. Inst. Nat. France, XXIII, pp. 1–680
- Chalub, Fabio A.C.C.; Zubelli, Jorge P. (2006). "Huygens' principle for hyperbolic operators and integrable hierarchies" (PDF). Physica D: Nonlinear Phenomena. 213 (2): 231–245. doi:10.1016/j.physd.2005.11.008.
- Darrigol, Olivier (2005). Worlds of Flow. Oxford ; New York: Oxford University Press. ISBN 978-0-19-856843-8.
- Dauxois, Thierry; Peyrard, Michel (2006). Physics of Solitons. Cambridge, UK ; New York: Cambridge University Press. ISBN 0-521-85421-0. OCLC 61757137.
- Dingemans, M. W. (1997). Water Wave Propagation Over Uneven Bottoms. River Edge, NJ: World Scientific. ISBN 981-02-0427-2.
- Dunajski, Maciej (2009). Solitons, Instantons, and Twistors. Oxford ; New York: OUP Oxford. ISBN 978-0-19-857063-9. OCLC 320199531.
- Gardner, Clifford S.; Greene, John M.; Kruskal, Martin D.; Miura, Robert M. (1967). "Method for Solving the Korteweg-deVries Equation". Physical Review Letters. 19 (19): 1095–1097. doi:10.1103/PhysRevLett.19.1095. ISSN 0031-9007.
- Grunert, Katrin; Teschl, Gerald (2009), "Long-Time Asymptotics for the Korteweg–De Vries Equation via Nonlinear Steepest Descent", Math. Phys. Anal. Geom., vol. 12, no. 3, pp. 287–324, arXiv:0807.5041, Bibcode:2009MPAG...12..287G, doi:10.1007/s11040-009-9062-2, S2CID 8740754
- Korteweg, D. J.; de Vries, G. (1895). "XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 39 (240): 422–443. doi:10.1080/14786449508620739. ISSN 1941-5982.
- Lax, Peter D. (1968). "Integrals of nonlinear equations of evolution and solitary waves". Communications on Pure and Applied Mathematics. 21 (5): 467–490. doi:10.1002/cpa.3160210503. ISSN 0010-3640.
- Miura, Robert M.; Gardner, Clifford S.; Kruskal, Martin D. (1968), "Korteweg–De Vries equation and generalizations. II. Existence of conservation laws and constants of motion", J. Math. Phys., 9 (8): 1204–1209, Bibcode:1968JMP.....9.1204M, doi:10.1063/1.1664701, MR 0252826
- Polyanin, Andrei D.; Zaitsev, Valentin F. (2003). Handbook of Nonlinear Partial Differential Equations. Boca Raton, Fla: Chapman and Hall/CRC. ISBN 978-1-58488-355-5.
- Vakakis, Alexander F. (2002). Normal Modes and Localization in Nonlinear Systems. Dordrecht ; Boston: Springer Science & Business Media. ISBN 978-0-7923-7010-9.
- Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States". Physical Review Letters. 15 (6): 240–243. doi:10.1103/PhysRevLett.15.240. ISSN 0031-9007.
External links
- Korteweg–De Vries equation at EqWorld: The World of Mathematical Equations.
- Korteweg–De Vries equation at NEQwiki, the nonlinear equations encyclopedia.
- Cylindrical Korteweg–De Vries equation at EqWorld: The World of Mathematical Equations.
- Modified Korteweg–De Vries equation at EqWorld: The World of Mathematical Equations.
- Modified Korteweg–De Vries equation at NEQwiki, the nonlinear equations encyclopedia.
- Weisstein, Eric W. "Korteweg–deVries Equation". MathWorld.
- Derivation of the Korteweg–De Vries equation for a narrow canal.
- Three Solitons Solution of KdV Equation – [1]
- Three Solitons (unstable) Solution of KdV Equation – [2]
- Mathematical aspects of equations of Korteweg–De Vries type are discussed on the Dispersive PDE Wiki.
- Solitons from the Korteweg–De Vries Equation by S. M. Blinder, The Wolfram Demonstrations Project.
- Solitons & Nonlinear Wave Equations