Catherine Freudenreich: Difference between revisions
→Research: Added secondary source |
No edit summary |
||
Line 15: | Line 15: | ||
== Career == |
== Career == |
||
Freudenreich |
Freudenreich spent her childhood in Los Alamos, New Mexico, before attending [[Rice University|Rice University,]] where she graduated in 1988 with a B.A in biology. She received her PhD in 1994 from [[Duke University]], where she studied inhibitor binding sites of [[Type II topoisomerase|Type II topoisomerases]] in the lab of Kenneth Kreuzer, and continued to do so as a postdoctoral researcher in the same lab.<ref>{{Cite journal |last1=Freudenreich |first1=C H |last2=Kreuzer |first2=K N |date=1994-11-08 |title=Localization of an aminoacridine antitumor agent in a type II topoisomerase-DNA complex. |journal=Proceedings of the National Academy of Sciences |language=en |volume=91 |issue=23 |pages=11007–11011 |doi=10.1073/pnas.91.23.11007 |doi-access=free |issn=0027-8424 |pmc=45155 |pmid=7971998|bibcode=1994PNAS...9111007F }}</ref> Freudenreich then undertook further postdoctoral research at [[Princeton University]] with [[Virginia Zakian]], studying CTG repeats in [[yeast]].<ref name=":1">{{Cite journal |last1=Freudenreich |first1=Catherine H. |last2=Kantrow |first2=Sara M. |last3=Zakian |first3=Virginia A. |date=1998-02-06 |title=Expansion and Length-Dependent Fragility of CTG Repeats in Yeast |url=https://www.science.org/doi/10.1126/science.279.5352.853 |journal=Science |language=en |volume=279 |issue=5352 |pages=853–856 |doi=10.1126/science.279.5352.853 |bibcode=1998Sci...279..853F |issn=0036-8075}}</ref><ref name=":0" /> |
||
After her postdoctoral studies, Freudenreich was appointed to an assistant professor position in the Department of Biology at Tufts University in 1999, where she is currently professor and department chair. <ref name=":0" /> |
After her postdoctoral studies, Freudenreich was appointed to an assistant professor position in the Department of Biology at Tufts University in 1999, where she is currently professor and department chair. <ref name=":0" /> |
Revision as of 20:23, 11 July 2024
This article, Catherine Freudenreich, has recently been created via the Articles for creation process. Please check to see if the reviewer has accidentally left this template after accepting the draft and take appropriate action as necessary.
Reviewer tools: Inform author |
Catherine H. Freudenreich | |
---|---|
Alma mater | Rice University (BA) Duke University (PhD) |
Scientific career | |
Fields | Molecular biology |
Institutions | Tufts University |
Doctoral advisor | Kenneth Kreuzer |
Other academic advisors | Virginia Zakian (postdoctoral) |
Website | https://as.tufts.edu/biology/freudenreich-lab |
Catherine Freudenreich is an American molecular biologist at Tufts University. Since 2019, Freudenreich has served as chair of the Department of Biology.[1]
Career
Freudenreich spent her childhood in Los Alamos, New Mexico, before attending Rice University, where she graduated in 1988 with a B.A in biology. She received her PhD in 1994 from Duke University, where she studied inhibitor binding sites of Type II topoisomerases in the lab of Kenneth Kreuzer, and continued to do so as a postdoctoral researcher in the same lab.[2] Freudenreich then undertook further postdoctoral research at Princeton University with Virginia Zakian, studying CTG repeats in yeast.[3][1]
After her postdoctoral studies, Freudenreich was appointed to an assistant professor position in the Department of Biology at Tufts University in 1999, where she is currently professor and department chair. [1]
Research
Freudenreich’s lab studies genome instability in yeast, with the aim of uncovering mechanisms of genetic disease and cancer. In particular, much of her research has focused on conserved trinucleotide repeat sequences, specifically CAG/CTG, and their contributions to genome fragility and instability.[4][5] Recently, Freudenreich’s group looked at CAG/CTG repeats in Huntington’s disease, finding that the cells’ attempts to repair CAG sequences often lead to large, deleterious deletions.[6][7][8]
Freudenreich has also notably studied how DNA repeat sequences contribute to DNA structures that can cause DNA breaks, and how the cell protects against genomic damage from these mechanisms. [4][9][10][11]
Notable publications
- Freudenreich, Catherine H.; Kantrow, Sara M.; Zakian, Virginia A. (1998-02-06). "Expansion and Length-Dependent Fragility of CTG Repeats in Yeast". Science. 279 (5352): 853–856. doi:10.1126/science.279.5352.853. ISSN 0036-8075.[3]
- Lahiri, Mayurika; Gustafson, Tanya L; Majors, Elizabeth R; Freudenreich, Catherine H (2004-07-23). "Expanded CAG Repeats Activate the DNA Damage Checkpoint Pathway". Molecular Cell. 15 (2): 287–293. doi:10.1016/j.molcel.2004.06.034. ISSN 1097-2765.[5]
- Polleys, Erica J.; Del Priore, Isabella; Haber, James E.; Freudenreich, Catherine H. (2023-04-29). "Structure-forming CAG/CTG repeats interfere with gap repair to cause repeat expansions and chromosome breaks". Nature Communications. 14 (1): 2469. doi:10.1038/s41467-023-37901-2. ISSN 2041-1723.[7]
- Zhang, Haihua; Freudenreich, Catherine H. (2007-08). "An AT-Rich Sequence in Human Common Fragile Site FRA16D Causes Fork Stalling and Chromosome Breakage in S. cerevisiae". Molecular Cell. 27 (3): 367–379. doi:10.1016/j.molcel.2007.06.012. ISSN 1097-2765. PMC 2144737. PMID 17679088.[10]
- Kerrest, Alix; Anand, Ranjith P.; Sundararajan, Rangapriya; Bermejo, Rodrigo; Liberi, Giordano; Dujon, Bernard; Freudenreich, Catherine H.; Richard, Guy-Franck (2009-01-11). "SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination". Nature Structural & Molecular Biology. 16 (2): 159–167. doi:10.1038/nsmb.1544. ISSN 1545-9985.[12]
- House, Nealia C.M.; Yang, Jiahui H.; Walsh, Stephen C.; Moy, Jonathan M.; Freudenreich, Catherine H. (2014-09-18). "NuA4 Initiates Dynamic Histone H4 Acetylation to Promote High-Fidelity Sister Chromatid Recombination at Postreplication Gaps". Molecular Cell. 55 (6): 818–828. doi:10.1016/j.molcel.2014.07.007. ISSN 1097-2765. PMC 4169719. PMID 25132173.[13]
- Su, Xiaofeng A.; Freudenreich, Catherine H. (2017-10-03). "Cytosine deamination and base excision repair cause R-loop–induced CAG repeat fragility and instability in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences. 114 (40). doi:10.1073/pnas.1711283114. ISSN 0027-8424. PMC 5635916. PMID 28923949.[14]
Awards and honors
- FASEB summer conference "Dynamic DNA Structures in Biology" (Chair, 2018; Co-chair, 2016)
- NIH MG panel (2018)
- NIH MGB panel (2017)
- Genetics Society of America (member)
- American Society for Biochemistry and Molecular Biology (member)
References
- ^ a b c "Catherine Freudenreich Faculty Profile". facultyprofiles.tufts.edu. Retrieved 2024-06-18.
- ^ Freudenreich, C H; Kreuzer, K N (1994-11-08). "Localization of an aminoacridine antitumor agent in a type II topoisomerase-DNA complex". Proceedings of the National Academy of Sciences. 91 (23): 11007–11011. Bibcode:1994PNAS...9111007F. doi:10.1073/pnas.91.23.11007. ISSN 0027-8424. PMC 45155. PMID 7971998.
- ^ a b Freudenreich, Catherine H.; Kantrow, Sara M.; Zakian, Virginia A. (1998-02-06). "Expansion and Length-Dependent Fragility of CTG Repeats in Yeast". Science. 279 (5352): 853–856. Bibcode:1998Sci...279..853F. doi:10.1126/science.279.5352.853. ISSN 0036-8075.
- ^ a b "Research Overview | Department of Biology". as.tufts.edu. Retrieved 2024-06-18.
- ^ a b Lahiri, Mayurika; Gustafson, Tanya L; Majors, Elizabeth R; Freudenreich, Catherine H (2004-07-23). "Expanded CAG Repeats Activate the DNA Damage Checkpoint Pathway". Molecular Cell. 15 (2): 287–293. doi:10.1016/j.molcel.2004.06.034. ISSN 1097-2765. PMID 15260979.
- ^ "How DNA Repair Can Go Wrong and Lead to Disease | Tufts Now". now.tufts.edu. 2023-05-10. Retrieved 2024-06-18.
- ^ a b Polleys, Erica J.; Del Priore, Isabella; Haber, James E.; Freudenreich, Catherine H. (2023-04-29). "Structure-forming CAG/CTG repeats interfere with gap repair to cause repeat expansions and chromosome breaks". Nature Communications. 14 (1): 2469. Bibcode:2023NatCo..14.2469P. doi:10.1038/s41467-023-37901-2. ISSN 2041-1723. PMID 37120647.
- ^ "Understanding the Link Between DNA Mutations & Repair Dysfunction | Genetics And Genomics". Labroots. Retrieved 2024-06-24.
- ^ Pennisi, Elizabeth (2006-06-09). "DNA's Molecular Gymnastics". Science. 312 (5779): 1467–1468. doi:10.1126/science.312.5779.1467. ISSN 0036-8075. PMID 16763129.
- ^ a b Zhang, Haihua; Freudenreich, Catherine H. (2007-08-03). "An AT-Rich Sequence in Human Common Fragile Site FRA16D Causes Fork Stalling and Chromosome Breakage in S. cerevisiae". Molecular Cell. 27 (3): 367–379. doi:10.1016/j.molcel.2007.06.012. ISSN 1097-2765. PMC 2144737. PMID 17679088.
- ^ "Mapping the Kinks in Faulty DNA | Tufts Now". now.tufts.edu. 2019-08-01. Retrieved 2024-06-18.
- ^ Kerrest, Alix; Anand, Ranjith P.; Sundararajan, Rangapriya; Bermejo, Rodrigo; Liberi, Giordano; Dujon, Bernard; Freudenreich, Catherine H.; Richard, Guy-Franck (2009-01-11). "SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination". Nature Structural & Molecular Biology. 16 (2): 159–167. doi:10.1038/nsmb.1544. ISSN 1545-9985. PMC 4454460. PMID 19136956.
- ^ House, Nealia C.M.; Yang, Jiahui H.; Walsh, Stephen C.; Moy, Jonathan M.; Freudenreich, Catherine H. (2014-09-18). "NuA4 Initiates Dynamic Histone H4 Acetylation to Promote High-Fidelity Sister Chromatid Recombination at Postreplication Gaps". Molecular Cell. 55 (6): 818–828. doi:10.1016/j.molcel.2014.07.007. ISSN 1097-2765. PMC 4169719. PMID 25132173.
- ^ Su, Xiaofeng A.; Freudenreich, Catherine H. (2017-10-03). "Cytosine deamination and base excision repair cause R-loop–induced CAG repeat fragility and instability in Saccharomyces cerevisiae". Proceedings of the National Academy of Sciences. 114 (40). Bibcode:2017PNAS..114E8392S. doi:10.1073/pnas.1711283114. ISSN 0027-8424. PMC 5635916. PMID 28923949.
External links
- Catherine Freudenreich publications indexed by Google Scholar