Jump to content

Deformation monitoring: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 18: Line 18:


== Application classification ==
== Application classification ==
Deformation monitoring can be classified into the broad categories shown in the following table:
Deformation monitoring can be classified into the following applications:
{| border="1"
! width="200" | Classification !! width="250" | Application
|-
! Natural Hazard Monitoring
|
*Landslides & Rockfalls<br />
*Landslides & Rockfalls<br />
*Volcanoes<br />
*Crustal Deformation<br />
*Crustal Deformation<br />
*Subsidence
*Subsidence<br />
*Bridges<br />
|-
*Viaducts<br />
! Structural Monitoring
|
*Bridges, Viaducts<br />
*Buildings<br />
*Buildings<br />
*Dams<br />
*Dams<br />
*Nuclear Power Plants<br />
*Oil Platforms<br />
*Oil Platforms<br />
*Pipes<br />
*Pipes<br />
*Tunnelling<br />
*Tunnelling<br />
*Construction sites
*Construction sites
|-
! Mining Monitoring
|
*Open Pit Mining<br />
*Open Pit Mining<br />
*Underground Mining
*Underground Mining
|}


== Methods ==
== Methods ==

Revision as of 12:16, 25 October 2007

Deformation monitoring is the systematic measurement and tracking of the alteration in the shape or dimensions of an object as a result of the application of stress to it. Deformation monitoring is a major component of logging measured values that may be used to for further computation, deformation analysis, predictive maintenance and alarming.

Deformation monitoring is primarily related to the field of applied surveying, but may be also related to the civil engineering, mechanical engineering, plant construction, soil and rock sta-bility mechanics.

The causes for deformation monitoring are changes in the bedrock, increase or decrease of weight, changes of the material properties or outside influences.

The used measuring devices (1) for a deformation monitoring depend on the application (2), the chosen method (3) and the required regularity (4).


Measuring devices

Measuring devices (or sensors) can be sorted in two main groups, geodetic and geotechnical sensors. Both measuring devices can be seamlessly combined in modern deformation monitoring.

  • Other techniques e.g.radar measuring devices.

Application classification

Deformation monitoring can be classified into the following applications:

  • Landslides & Rockfalls
  • Volcanoes
  • Crustal Deformation
  • Subsidence
  • Bridges
  • Viaducts
  • Buildings
  • Dams
  • Oil Platforms
  • Pipes
  • Tunnelling
  • Construction sites
  • Open Pit Mining
  • Underground Mining

Methods

Deformation monitoring can be made manually or automatically.

  • Manual deformation monitoring is the operation of sensors or instruments by hand for the purpose of deformation monitoring.
  • An automatic deformation monitorin system system is a group of interacting, interrelated, or interdependent software and hardware elements forming a complex whole for deformation monitoring that, once set up, does not require human input to function.

Note that deformation analysis and interpretation of the data collected by the monitoring system is not included in this definition. An automatic monitoring system may be used for periodic or continuous monitoring.

Regularity and scheduling

The monitoring regularity and time interval of the measurements must be considered depending on the application and object to be monitored. Objects can undergo both rapid, high frequency movement and slow, gradual movement. For example, a bridge might oscillates with a period of a few seconds due to the influence of traffic and wind and also be shifting gradually due to tectonic changes.

  • Regularity: ranges from a days, weeks or years for manual monitoring and continuous for automatic monitoring systems.
  • Measurement interval: ranges from fractions of a second to hours.

Risk management

Deformation monitoring systems provide a proactive control of a hazard related to possible change or failure of a structure. Policyholders can reduce risk exposure before and during construction and throughout the lifecycle of the structure and hence decrease the insurance premium. Refer to Risk Management for more detail.

See also

Further reading