Jump to content

Triple product rule: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
avoid wikilinks in bold title words, per WP:LEDE#Links
Line 44: Line 44:
* Elliott, JR, and Lira, CT. ''Introductory Chemical Engineering Thermodynamics'', 1st Ed., Prentice Hall PTR, 1999. p. 184.
* Elliott, JR, and Lira, CT. ''Introductory Chemical Engineering Thermodynamics'', 1st Ed., Prentice Hall PTR, 1999. p. 184.
* Carter, Ashley H. ''Classical and Statistical Thermodynamics'', Prentice Hall, 2001, p. 392.
* Carter, Ashley H. ''Classical and Statistical Thermodynamics'', Prentice Hall, 2001, p. 392.
* Wang, C.-Y., and Hou, J.-H., ''Teaching Differentials in Thermodynamics Using Spatial Visualization'', http://arxiv.org/abs/1110.6663.

[[Category:Thermodynamics]]
[[Category:Thermodynamics]]
[[Category:Multivariable calculus]]
[[Category:Multivariable calculus]]

Revision as of 18:27, 3 November 2011

The triple product rule, known variously as the cyclic chain rule, cyclic relation, cyclical rule or Euler's chain rule, is a formula which relates partial derivatives of three interdependent variables. The rule finds application in thermodynamics, where frequently three variables can be related by a function of the form f(x, y, z) = 0, so each variable is given as an implicit function of the other two variables. For example, an equation of state for a fluid relates temperature, pressure, and volume in this manner. The triple product rule for such interrelated variables x, y, and z comes from using a reciprocity relation on the result of the implicit function theorem in two variables and is given by

Note: The third variable is considered to be an implicit function of the other two.

Here the subscripts indicate which variables are held constant when the partial derivative is taken. That is, to explicitly compute the partial derivative of x with respect to y with z held constant, one would write x as a function of y and z and take the partial derivative of this function with respect to y only.

The advantage of the triple product rule is that by rearranging terms, one can derive a number of substitution identities which allow one to replace partial derivatives which are difficult to analytically evaluate, experimentally measure, or integrate with quotients of partial derivatives which are easier to work with. For example,

Various other forms of the rule are present in the literature; these can be derived by permuting the variables {x, y, z}.

Derivation

An informal derivation follows. Suppose that f(x, y, z) = 0. Write z as a function of x and y. Thus the total derivative dz is

Suppose that we move along a curve with dz = 0, where the curve is parameterized by x. Thus y can be written in terms of x, so on this curve

Therefore the equation for dz = 0 becomes

Since this must be true for all dx, rearranging terms gives

Dividing by the derivatives on the right hand side gives the triple product rule

Note that this proof makes many implicit assumptions regarding the existence of partial derivatives, the existence of the exact differential dz, the ability to construct a curve in some neighborhood with dz = 0, and the nonzero value of partial derivatives and their reciprocals. A formal proof based on mathematical analysis would eliminate these potential ambiguities.

See also

References

  • Elliott, JR, and Lira, CT. Introductory Chemical Engineering Thermodynamics, 1st Ed., Prentice Hall PTR, 1999. p. 184.
  • Carter, Ashley H. Classical and Statistical Thermodynamics, Prentice Hall, 2001, p. 392.
  • Wang, C.-Y., and Hou, J.-H., Teaching Differentials in Thermodynamics Using Spatial Visualization, http://arxiv.org/abs/1110.6663.