Jump to content

Tidal triggering of earthquakes: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reverted edits by 208.70.40.16 (talk): unexplained content removal (HG) (3.3.3)
m + further scientific references
Line 20: Line 20:
*[[Earthquake prediction#1990: New Madrid, U.S. (Browning)]]
*[[Earthquake prediction#1990: New Madrid, U.S. (Browning)]]
*[[Jim Berkland#Methodology]]
*[[Jim Berkland#Methodology]]
*[[User:Wikinaut/Moon-Earthquake-Theory#references|Moon-Earthquake-Theory (Userpage)]] - User-collected further scientific references


==Notes==
==Notes==

Revision as of 22:27, 30 January 2018

Amplitude of the ocean tide at Golden Gate Bridge for five weeks in 1970. Brackets indicate seismic window periods as defined by Jim Berkland.[1]

Tidal triggering of earthquakes is the idea that tidal forces may induce seismicity.

In connection with earthquakes, syzygy refers to the idea that the combined tidal effects of the sun and moon – either directly as earth tides in the crust itself, or indirectly by hydrostatic loading due to ocean tides[2] – should be able to trigger earthquakes in rock that is already stressed to the point of fracturing, and therefore more earthquakes should occur at times of maximal tidal stress, such as at the new and full moons. Indeed, recent work has concluded that "large earthquakes are more probable during periods of high tidal stress".[3]

Previously, scientists have searched for such a correlation for over a century, but with the exception of volcanic areas (including mid-ocean spreading ridges)[4] the results have been mixed.[5] It has been suggested that some negative results are due to failure to account for tidal phase and fault orientation (dip),[6] while "many studies reporting positive correlations suffer from a lack of statistical rigor."[7] One systematic investigation found "no evidence for an increase in seismicity during intervals of large tidal range but there is clear evidence for small but significant increase in earthquake rates near low tide"; it did not find an increase of earthquakes near peak spring tides.[8] Seismicity is favored at low tides, particularly for reverse faults, because unloading unclamps the fault, reducing friction. Ocean loading has no effect at all on strike-slip faults.[9]

Research work has shown a robust correlation between small tidally induced forces and non-volcanic tremor activity.[10] Volcanologists use the regular, predictable Earth tide movements to calibrate and test sensitive volcano deformation monitoring instruments. The tides may also trigger volcanic events. [11] [12]

See also

Notes

Sources

  • Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki (2016). "Earthquake potential revealed by tidal influence on earthquake size–frequency statistics". Nature Geoscience. Bibcode:2016NatGe...9..834I. doi:10.1038/ngeo2796. {{cite journal}}: Invalid |ref=harv (help)
  • McNutt, Marcia; Heaton, Thomas (January 1981), "An Evaluation of the Seismic-Window Theory for Earthquake Prediction" (PDF), California Geology, 34 (1): 12–16, ISSN 0026-4555.
  • Sottili, G.; Martino, S.; Palladino, D.M.; Paciello, A.; Bozzano, F. (2007), "Effects of tidal stresses on volcanic activity at Mount Etna, Italy", Geophysical Research Letters, 34 (L01311), Bibcode:2007GeoRL..34.1311S, doi:10.1029/2006GL028190.

• Fluxing mantle surface area in seismic causality a fluid dynamics exploration of molteniron ferrite migration under pressure by E2WT.