Quasiperiodic function
This article needs additional citations for verification. (January 2023) |
In mathematics, a quasiperiodic function is a function that has a certain similarity to a periodic function.[1] A function is quasiperiodic with quasiperiod if , where is a "simpler" function than . What it means to be "simpler" is vague.
A simple case (sometimes called arithmetic quasiperiodic) is if the function obeys the equation:
Another case (sometimes called geometric quasiperiodic) is if the function obeys the equation:
An example of this is the Jacobi theta function, where
shows that for fixed it has quasiperiod ; it also is periodic with period one. Another example is provided by the Weierstrass sigma function, which is quasiperiodic in two independent quasiperiods, the periods of the corresponding Weierstrass ℘ function.
Functions with an additive functional equation
are also called quasiperiodic. An example of this is the Weierstrass zeta function, where
for a z-independent η when ω is a period of the corresponding Weierstrass ℘ function.
In the special case where we say f is periodic with period ω in the period lattice .
Quasiperiodic signals
Quasiperiodic signals in the sense of audio processing are not quasiperiodic functions in the sense defined here; instead they have the nature of almost periodic functions and that article should be consulted. The more vague and general notion of quasiperiodicity has even less to do with quasiperiodic functions in the mathematical sense.
A useful example is the function:
If the ratio A/B is rational, this will have a true period, but if A/B is irrational there is no true period, but a succession of increasingly accurate "almost" periods.
See also
References
- ^ Mitropolsky, Yu A. (1993). Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients. A. M. Samoilenko, D. I. Martinyuk. Dordrecht: Springer Netherlands. p. 108. ISBN 978-94-011-2728-8. OCLC 840309575.