Jump to content

Talk:Biodegradable plastic

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 79.199.61.21 (talk) at 06:31, 3 August 2009 (→‎Timescales?: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Please add {{WikiProject banner shell}} to this page and add the quality rating to that template instead of this project banner. See WP:PIQA for details.
WikiProject iconEnvironment Start‑class
WikiProject iconThis environment-related article is part of the WikiProject Environment to improve Wikipedia's coverage of the environment. The aim is to write neutral and well-referenced articles on environment-related topics, as well as to ensure that environment articles are properly categorized.
Read Wikipedia:Contributing FAQ and leave any messages at the project talk page.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
???This article has not yet received a rating on the project's importance scale.


Merge

Merge to Bioplastics? How can you merge a product to manufacture bioplastics into bioplastics?


Well I got confused (still am a bit) why are there different articles for bioplastic and biodegradeable plastic. there should at least be links to each article from the other with explainations if there is a reason that they aren't merged. —Preceding unsigned comment added by Bbdougl (talkcontribs) 23:07, 3 March 2008 (UTC)[reply]

Importance

This article can help reduce the landfills in 1-5 years. No other product can do that without leaching into the groundwater and have a true environmental impact.

Biodegradation

Please explain your "opinions" on the Bio-Batch work, as well as your "opinion" on biodegradation.

According to ASTM 5511 ASTM 5338 as well as the ISO 14001.

Thank you, ASTM 6400 is a unique test made only for industrial composting facilities that do not exist in numbers in the US. Also Composting is much different then Biodegradation, you can look this up in any dictionary, and if rightfully so, then PLA and PSM do not fit in this category of composting and should be labelled as Industrial Composting Only.

Biodegradation is The breakdown of organic materials into simpler components by microorganisms, composting is also the breakdown of organic materials into simpler components by microorganisms and hence composting is a form of biodegradation. The Bio-Batch article reads like an advert for the Bio-Batch technology and the links you have inserted into articles such as biodegradation read very much like spam. I suggest you tweak your article to be NPOV and place links to the Bio-Batch website where it is relevant- i.e. bioplastics and on the Bio-Batch article. A link to the Bio-Batch website is not appropriate on the biodegradation article. --Alex 13:50, 25 August 2006 (UTC)[reply]

The biogradation article has several sentences that are the same or very similar to sentences in this one paragraph source: http://www.bio-tec.biz/biobatch.html . Is it a copyright violation? Or did the original contributor perchance write both sources? Cardamon 15:53, 26 August 2006 (UTC)[reply]

There certainly seems to be a direct connection between one and the other. Perhaps we can be enlightened ? Mrs Trellis 18:00, 26 August 2006 (UTC)[reply]
This is an article stub created by removing of an article which was clearly advertising by User:Callsign. Anyone that has a technical knowledge of biodegradable plastics and are able to provide differentiation with bioplastic, unbiasedly, would be very welcome! Alex 15:57, 27 August 2006 (UTC)[reply]

Contradiction

The main disadvantage with oil-based biodegradable plastics is that their degradation contributes to global warming through the release of carbon dioxide as a main end product. This does not apply to starch based plastics as they are formed from carbon which is already in the ecosystem (via photosynthesis).

Unless someone can cite this it doesn't make scientific sense because oil based plastics were formed from oils, formed from animals which ate plants and so the carbon from the oil came from plants and from photosynthesis, so any carbon dioxide release will be long overdue by millions of years... would also have come from the ecosystem.Tourskin 05:59, 20 July 2007 (UTC)[reply]

Actually, that does make some sense. (No, I did not write it.) First, let's consider a simpler question. Why does pumping oil out of the ground and then burning it cause the amount of CO2 in the air to increase, while growing plants and then burning them doesn't? Most oil that is pumped out of the ground would have stayed there for many millions of years if it had not been pumped. So, burning oil puts carbon (in carbon dioxide) into the air that would not have been in either the air or the ecosystem had the oil not been pumped out of the ground. On the other hand, burning plants just returns carbon dioxide to the air that the plants originally took from the air using photosynthesis; thus it makes little long term difference to the amount of carbon dioxide in the air. (In the short run, growing plants and storing them for a while temporarily removes carbon dioxide from the air.) If the plastic really is biodegraded by aerobic respiration by bacteria, as the author of the passage is assuming, the end result will be as if it had been burned. So the only questionable thing is whether all these plastics really are biodegraded by aerobic respiration. Cardamon 07:20, 20 July 2007 (UTC)[reply]
in order for anything to biodegrade by science standards you will create either CO2 or CH4, depending on if it is Anearobic or Aerobic biodegradation. The person siting this makes no sense. PHA's PHB's PLA's Oil Based, PCL's, PBS's, yada yada all create CH4 or CO2, or they are not biodegrading. User:Callsign —Preceding comment was added at 23:01, 5 March 2008 (UTC)[reply]

When some material is called "biodegradable" because its breakdown components are LESS toxic than the cheaper alternative, and that is only AFTER it has been detoxified by microbes, I get the 'uh-oh' feeling. Something tells me that even if this article is accurate, this material isn't as 'biodegradable' as shit and piss. Eddietoran (talk) 05:27, 24 July 2009 (UTC)[reply]

Irrelevant "Environmental Concerns" section

The "Environmental Concerns" section seems irrelevant to this article, at least as it is currently worded. It appears to refer to plastics in general, not Biodegradable plastics in particular. Perhaps it should be reworded or removed completely.

Temporary lock

I've temporarily locked the article due to recent frequent edits that were not appropriate. If there are any concerns over this please state them here. Halogenated (talk) 02:48, 12 September 2008 (UTC)[reply]

Envorimental concern

For the envoriment it should be stated that even though they are biodegradable these plastics are still harmfull do to the fact that they give off harmfull gases when burnt, and that they still are not mad of nautraul chemicals, thus the materials used can be hramfull to the to they envoriment and when they have contact with animals they can be harmed.

Contradictions, Adverts, Concerns

Changes made: These also are the criteria used by the Biodegradble Products Institute to certify that a plastic will biodegrade in a compost environment without environmental side-effects . [1] (Environmental Side-Effects) # PLA/ethanol is creating more global warming pollution than gasoline according to the Environmental Defense Org., November, 2007.

  1. GMO corn kills the larvae of beneficial pollinators, including the Monarch butterfly, and other beneficial insects. It fails, for example, to kill the African Cotton Worm, but kills the beneficial Green Lacewing that eats Cotton Worms. Insects develop resistance to the engineered Bt toxin over time, threatening to render natural Bt sprays useless for organic farmers — a tool allowed as a last resort.
  2. GMO corn threatens organic farmers and a sustainable environment. Pollen drift and genetic contamination reduce biodiversity. (Packaging and Plastics, July, 2006, by Natalie Reitman-White and Bob Doppelt
  3. A recent article from the World Bank states that 75% of the increase in food prices is because of corn used for biofuels. The US claims of 3% are way off. One would also have to include any corn based plastics as they are also using corn that would normally be used for food. The Guardian; July 4, 2008, Aditya Chakrabortty
  4. Smithfield Foods’ CEO C. Larry Pope, stated that the problems his company currently face are due to the high cost of corn, not to the recession. “Profits are down because of the recession. We’d be doing fine if corn prices hadn’t skyrocketed.” The Virginia-Pilot, Feb. 12, 2009
  5. NatureWorks has been cited by the state of Nebraska for air pollution. They were guilty of emitting organic compounds (VOC) and hazardous air pollutants above the permitted levels- Plastic News, Dec., 2006.

(Biodegradable Products Institute is not a governing authority, this is an advertisement for their $4,800 Logo Program, a non profit that outsources all of their testing to accredited labs on the ASTM D6400 and D6868) (Personal Opinions, non science based) There is no scientific definition for biodegradable plastics only compostable in an industrial compost(Incorrect read ASTM D5511) although various researchers may claim that plastics with different rates of biodegradation (from months to years) are biodegradable for marketing purposes only(Incorrect and non science based). No additive base plastic currently meets these mainstream definitions of biodegradble / compostable to include biobatch and oxodegradable additives (Incorrect biobatch does, please read the ASTM D5511 method, which is the same as the D5338 method which the ASTM D6400 standard references, please review)[2]

(Incorrect the ASTM D5511) Because of various temperature, humidity and microbial environments in landfills there is not test that will ensure a compostable plastic will biodegrade in a landfill. For example what may biodegrade in Florida in the summer may not in an Alaskan winter so the ASTM D20 committee on plastics had not published a definition of biodegrade in a landfill Once again the D5511 —Preceding unsigned comment added by Callsign (talkcontribs) 07:24, 14 May 2009 (UTC)[reply]

Need section listing names of plastics in this category

There should be a section listing plastics in this category. I've found the following partial list:

  • polybutylene adipate/terephthalate
  • polybutylene succinate
  • polybutylene succinate/adipate
  • polybutylene succinate/carbonate
  • polybutylene succinate terephthalate
  • polytetramethylene adipate/terephthalate
  • polycaprolactone

-- Dougher (talk) 01:53, 17 July 2009 (UTC)[reply]

Timescales?

I came here looking for timescales for biodegradation. How long does it take typical biodegradable, oxo-degradable and non-degradable materials to degrade in aerobic and anaerobic environments? The only clue in the article is the sentence "Disposing of biodegradable plastics made from natural materials in anaerobic (landfill) environments will result in the plastic lasting for hundred of years." Rough orders of magnitude (years, 10s of years, 100s of years, etc.) would do. 79.199.61.21 (talk) 06:31, 3 August 2009 (UTC)[reply]