Jump to content

Allele

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 194.83.139.177 (talk) at 11:38, 23 September 2009 (removed disputed tag -please see bottom of talk page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

An allele (Template:PronEng (UK), /əˈliːl/ (US)) (from the Greek αλληλος allelos, meaning other) is one of a series of different forms of a gene. The word is a short from of allelomorph ('other form'), which was used in the early days of genetics to describe variant forms of a gene detected as different phenotypes. Alleles are now understood to be alternative DNA sequences at the same physical gene locus, which may or may not result in different phenotypic traits. In any particular diploid organism, with two copies of each chromosome, the genotype for each gene comprises the pair of alleles present at that locus, which are the same in homozygotes and different in heterozygotes. A population or species of organisms typically includes multiple alleles at each locus among various individuals. Allelic variation at a locus is measureable as the number of alleles (polymorphism) present or the proportion of heterozygotes (heterozygosity) in the population.

For example, at the gene locus for ABO blood type proteins in humans[1], classical genetics recognizes three alleles, IA, IB, and IO, that determines compatibility of blood transfusions. Any individual has one of six possible genotypes (AA, AO, BB, BO, AB, and OO) that produce one of four possible phenotypes: "A" (produced by AA homozygous and AO heterozygous genotypes), "B" (produced by BB homozygous and BO heterozygous genotypes), "AB" heterozygotes, and "O" homozygotes. It is now appreciated that each of the A, B, and O alleles is actually a class of multiple alleles with different DNA sequences that produce proteins with identical properties: more than 70 alleles are known at the ABO locus [2]. An individual with "Type A" blood may be a AO heterozygote, an AA homozygote, or an A'A heterozygote with two different 'A' alleles.

Dominant and Recessive Alleles

In many cases, genotypic interactions between the two alleles at a locus can be described as dominant or recessive, according to which of the two homozygous genotype the phenotype of the heterozygote most resembles. Where the heterozygote is indistinguishable from one of the homozygotes, the allele involved is said to be dominant to the other, which is said to be recessive to the former. The degree and pattern of dominance varies among loci: for a further discussion see Dominance.

The term "wild type" allele is sometimes used to describe an allele that is thought to contribute to the typical phenotypic character as seen in "wild" populations of organisms, such as fruit flies (Drosophila melanogaster). Such a "wild type" allele was historically regarded as dominant, common, and "normal", in contrast to "mutant" alleles regarded as recessive, rare, and frequently deleterious. It was commonly thought that most individuals were homozygous for the "wild type" allele at most gene loci, and that any alternative 'mutant' allele was found in homozygous form in a small minority of "affected" individuals, often as genetic diseases, and more frequently in heterozygous form in "carriers" for the mutant allele. It is now appreciated that most or all gene loci are highly polymorphic, with multiple alleles, whose frequencies vary from population to population, and that a great deal of genetic variation is hidden in the form of alleles that do not produce obvious phenotypic differences.

Allele and Genotype Frequencies

The frequency of alleles in a population can be used to predict the frequencies of the corresponding genotypes (see Hardy-Weinberg principle). For a simple model, with two alleles:

where p is the frequency of one allele and q is the frequency of the alternative allele, which necessarily sum to unity. Then, p2 is the fraction of the population homozygous for the first allele, 2pq is the fraction of heterozygotes, and q2 is the fraction homozygous for the alternative allele. If the first allele is dominant to the second, than the fraction of the population that will show the dominant phenotype is p2 + 2pq, and the fraction with the recessive phenotype is q2.

With three alleles:

and


In the case of multiple alleles at a diploid locus, the number of possible genotypes (G) possible with a number of alleles (a) is given by the expression:

Allelic variation in genetic disorders

A number of genetic disorders are caused when an individual inherits two recessive alleles for a single-gene trait. Recessive genetic disorders include Albinism, Cystic Fibrosis, Galactosemia, Phenylketonuria (PKU), and Tay-Sachs Disease. Other disorders are also due to recessive alleles, but because the gene locus is located on the X chromosome, so that males have only one copy hemizygosity, they are more frequent in males than in females. Example include red-green color blindness and Fragile X syndrome.

Other disorders, such as Huntington disease, occur where an individual inherits only one dominant allele.

See also

References

  • National Geographic Society, Alton Biggs, Lucy Daniel, Edward Ortleb, Peter Rillero, Dinah Zike. "Life Science". New York, Ohio, California, Illinois: Glencoe McGraw-Hill. 2002