Jump to content

Talk:Kronecker product

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 129.32.11.206 (talk) at 17:18, 16 October 2012 (The Kronecker Product is not the Tensor Product). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

WikiProject iconMathematics Start‑class Mid‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-priority on the project's priority scale.


References

Is it possible to insert a reference in which one can find proofs for the listed properties of the Kronecker product? E.g. Abstract properties / 1. Spectrum needs in my opinion a citation. — Preceding unsigned comment added by 161.116.80.135 (talk) 15:55, 10 September 2012 (UTC)[reply]


Request

Requesting addition/articles for Khatri-Rao and Tracy-Singh products. [1] Shyamal 04:39, 25 July 2006 (UTC)[reply]

 Done - actually a few months ago. -- StevenDH (talk) 20:23, 16 April 2008 (UTC)[reply]


add bases to comparison to abstract tensor product

The paragraph should note that a choice of bases is involved: If A and B represent homomorphisms given certain bases of the involved vector spaces, the Kronecker product of A and B represents the tensor product of these homomorphisms with respect to certain bases of the tensor products of the domain and codomain vector spaces of the form a_1 x b_1, a_1 x b_2, ..., a_1 x b_n, a_2 x b_1, ... 84.190.181.201

 Done - actually a few months ago, as well. RobHar (talk) 16:18, 18 August 2009 (UTC)[reply]

Column-wise Khatri-Rao product

An anonymous user edited (concerning the final related matrix operation):

<!-- comment: the following definition is the same as the above except that it uses implicit partitions instead of explicit partitions... is there really need for this second example? -->

The reason I got me a Wikipedia-account in the first place was that I needed the definition of the colunm-wise KR product for my master's thesis, and I was tired of always looking in the paper by Liu. Later I examined this paper in which I saw (on p.3 in the pdf) what I had by then found out namely that the Khatri-Rao product is implied to operate on matrices with as partitions their columns. I wasn't sure whether this would be a mistake or a different (and confusing) convention or something, therefore, and also for my own reference, I added it to the article as a seperate case. But maybe it needs some clarification. -- StevenDH (talk) 20:23, 16 April 2008 (UTC)[reply]

I was the anonymous user who added that. That's interesting to hear why you initially added it. As you can see, I changed the wording in the article to say that both may be called the KR product. I've used the KR product in a couple papers recently in which I just define it as implicitly partitioning columns to avoid any confusion. As it stands, I left the example you added because it probably is better to include both examples (it appears both definitions are used).24.91.117.221 (talk) 17:03, 26 May 2008 (UTC)[reply]

Question!!!

If A is n-by-n, B is m-by-m and denotes the k-by-k identity matrix then we can define the Kronecker sum, , by

(Note that this is different from the direct sum of two matrices.)

But the denotion of Kronecker sum and Direct sum is equel!!! So is it mistake? Gvozdet (talk) 13:29, 18 August 2009 (UTC)[reply]

Do you mean that they are both denoted by ⊕? That's not really problem. There aren't enough symbols in math so it's common to reuse symbols. I am surprised this is called the Kronecker sum in the first place though. RobHar (talk) 15:37, 18 August 2009 (UTC)[reply]

Link to the article in Russian is missing

http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BD%D0%B7%D0%BE%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5 —Preceding unsigned comment added by 217.29.95.125 (talk) 14:23, 23 July 2010 (UTC)[reply]

The Kronecker Product is not the Tensor Product

There is a confusing clash of nomenclature regarding the Kronecker product.

Despite the occasional use of the phrase "tensor product" to describe the Kronecker product, the Kronecker product doesn't coincide with the usual definition of the tensor product. The tensor product is an operation that produces a tensor of higher rank. That is, in coordinates the tensor product adds indices:

(Refer, for example, to: John Lee, Introduction to Smooth Manifolds)

As an example, the tensor product of two vectors gives you a matrix (ignoring covariant and contravariant issues for the moment). But the tensor product of two matrices is a fourth-rank tensor, not another matrix. The Kronecker product between matrices simply gives you another matrix (although with higher dimension), and is then not the same thing as the tensor product.

The distinction might be blurred in some literature where they presumably call the actual tensor product a Cartesian product, which is also bad nomenclature since the Cartesian product is a product on sets, not tensors; better nomenclature would be direct product (and indeed MathWorld adopts an explicit hybrid nomenclature to be absolutely clear: [[2]]).

The relevant section of the Tensor Product page agrees with me except for the instances that mention the Kronecker product. In fact, this confusion arises in the talk page of the Tensor Product article as well, where Physdragon also agrees with me.

I think the confusion is that when working with only vectors and matrices it's easy to identify matrices and their vectorized counterparts (or indeed fourth-rank tensors and their matricized counterparts) -- something that can't be done with general tensors. The Kronecker product in this light is then the "matricized" version of the fourth-rank tensor which maps between second-rank tensors of the form

or more explicitly is the matrix which maps between vectorized tensors of the form

The Kronecker product should then be contrasted with the tensor product and should not be used to exemplify the tensor product, which is a different -- albeit related -- beast. 129.32.11.206 (talk) 18:22, 15 October 2012 (UTC)[reply]

If you read what this page says, it is explained that "the Kronecker product of matrices corresponds to the abstract tensor product of linear maps". In short, if S and T are two linear maps, they induce a linear map ST whose matrix (with respect to a specific fairly natural choice of basis) is the Kronecker product of the matrices representing S and T. There's really no need to talk about ranks of tensors here. RobHar (talk) 03:57, 16 October 2012 (UTC)[reply]
Thank you for your responsive and constructive feedback. I agree that ranks of tensors aren't necessarily relevant to the Kronecker product, which is why I think this article should not contain any mention of the tensor product at all, except perhaps for contrast. Maybe I didn't make the purpose of my post clear. This is what I think should happen with this article IMO: I think these phrases should be removed or revised:
"[The Kronecker product] is a generalization of the outer product (which is denoted by the same symbol) from vectors to matrices, and gives the matrix of the tensor product with respect to a standard choice of basis." (emphasis mine), and
"If A and B represent linear transformations V1 → W1 and V2 → W2, respectively, then A ⊗ B represents the tensor product of the two maps, V1 ⊗ V2 → W1 ⊗ W2." (emphasis mine)
The first phrase is misleading because "matrix of the tensor product" is ambiguous. It could be made more precise by calling it the matricization of the tensor product, which refers to an actual operation on tensors, as opposed to implying that there is an obvious "matrix of a tensor". It may seem obvious in the case of second rank, but it's better to be delicate when going between tensors and matrices, because problems can arise (for example, the transformation rules which characterize a tensor don't work properly when the tensor has been matricized).
(See below this post for a correspondence between the Kronecker and tensor products as a matricization, which I feel is more precise than the current language in the article.)
The second phrase is misleading because it's false (we've already defined ⊗ to mean Kronecker product here!), except in the sense where "tensor product" is a synonym for "Kronecker product", which is a bad synonym to introduce since it's highly ambiguous and confusing. 129.32.11.206 (talk) 17:18, 16 October 2012 (UTC)[reply]

Maybe in order to clarify the relationship, we could put up something like this:

For two second-rank tensors and , their Kronecker product can be written as:
where denotes the abstract tensor product, and is the matricization map taking rank-4 tensors over elements of viewed as a space of rank-2 tensors, to rank-2 tensors over elements of viewed as a space of vectors (rank-1 tensors).

One problem with this is that the between vector spaces is an abstract tensor product and not a Kronecker product, so to be consistent the notation will be funny-looking: , etc.

Another problem is the ambiguity of saying "viewed as a space of..." However I think this is sufficiently clear that one shouldn't have to obfuscate the notation to be precise: 129.32.11.206 (talk) 17:18, 16 October 2012 (UTC)[reply]