Jump to content

Talk:Constant sheaf

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2620:101:f000:700:223:6cff:fe98:4d1 (talk) at 14:32, 8 September 2013 (→‎separated presheaf?). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Please add {{WikiProject banner shell}} to this page and add the quality rating to that template instead of this project banner. See WP:PIQA for details.
WikiProject iconMathematics Stub‑class Mid‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StubThis article has been rated as Stub-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-priority on the project's priority scale.

mathoverflow comment

The general definition of (last paragraph) is wrong. Check out this mathoverflow question.

Also I think that the example is far too long ... but this is just my opinion. -oo- (talk) 10:30, 1 May 2010 (UTC)[reply]

nine inclusions?

In the "detailed example" why are there nine inclusions, and not five? 85.250.40.219 (talk) 23:04, 14 January 2011 (UTC)[reply]

Thanks for pointing that out. It appears that when this text was originally written (back in December 2007, see this diff), the editor was counting the trivial inclusions as well (such as {p} ⊆ {p}). In July 2008, a minor rewrite introduced the term "non-trivial" without changing the number from 9 down to 5 (see this diff). I'll fix it now. RobHar (talk) 23:34, 14 January 2011 (UTC)[reply]

separated presheaf?

The text claims that F is a separated presheaf and satisfies the gluing axiom, but not a sheaf. I believe the usual definition of a "separated presheaf" is simply one which satisfies the identity axiom (if two sections of U agree on all the members of some open cover of U then they are the same), not a sheaf whose restriction maps are injective (this almost never happens!). Thus any separated presheaf which satisfies the gluing axiom is a sheaf... 2620:101:F000:700:223:6CFF:FE98:4D1 (talk) 02:57, 6 August 2013 (UTC)[reply]

This is not correct. A separated presheaf is indeed one with injective restriction maps, and yes, they do occur in practice. For example, see the construction of the sheaf associated to a presheaf in SGA 4; Grothendieck and Verdier construct a functor L from presheaves to presheaves which turns all presheaves into separated presheaves and all separated presheaves into sheaves; thus applying L twice gives the sheaf associated to a presheaf. Ozob (talk) 03:28, 6 August 2013 (UTC)[reply]
Your response is not consistent with the definition provided at Sheaf (mathematics). 2620:101:F000:700:223:6CFF:FE98:4D1 (talk) 14:31, 8 September 2013 (UTC)[reply]