Jump to content

Bioretention

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 199.107.67.131 (talk) at 20:38, 8 October 2014 (→‎References). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A bioretention cell, also called a rain garden, in the United States. It is designed to treat polluted stormwater runoff from an adjacent parking lot. Plants are in winter dormancy.

Bioretention is the process in which contaminants and sedimentation are removed from stormwater runoff. Stormwater is collected into the treatment area which consists of a grass buffer strip, sand bed, ponding area, organic layer or mulch layer, planting soil, and plants. Runoff passes first over or through a sand bed, which slows the runoff's velocity, distributes it evenly along the length of the ponding area, which consists of a surface organic layer and/or groundcover and the underlying planting soil. The ponding area is graded, its center depressed. Water is ponded to a depth of 15 cm (5.9 in) and gradually infiltrates the bioretention area or is evapotranspired. The bioretention area is graded to divert excess runoff away from itself. Stored water in the bioretention area planting soil exfiltrates[disambiguation needed] over a period of days into the underlying soils.[1]

Filtration

Each of the components of the bioretention area is designed to perform a specific function. The grass buffer strip reduces incoming runoff velocity and filters particulates from the runoff. The sand bed also reduces the velocity, filters particulates, and spreads flow over the length of the bioretention area. Aeration and drainage of the planting soil are provided by the 0.5 m (20 in) deep sand bed. The ponding area provides a temporary storage location for runoff prior to its evaporation or infiltration. Some particulates not filtered out by the grass filter strip or the sand bed settle within the ponding area.[1] In some systems sandy fill media are mixed with, or replaced by, a ground, organically-modified silica, available commercially as Osorb, which repels water but swells to absorb small, organic toxins in runoff and stormwater effluent. The Osorb media does not absorb biological organisms, allowing for healthy plant growth.[2]

The organic or mulch layer also filters pollutants and provides an environment conducive to the growth of microorganisms, which degrade petroleum-based products and other organic material. This layer acts in a similar way to the leaf litter in a forest and prevents the erosion and drying of underlying soils. Planted groundcover reduces the potential for erosion as well, slightly more effectively than mulch. The maximum sheet flow velocity prior to erosive conditions is 0.3 meters per second (1 foot per second) for planted groundcover and 0.9 meters per second (3 feet per second) for mulch.[3]

The clay in the planting soil provides adsorption sites for hydrocarbons, heavy metals, nutrients and other pollutants. Stormwater storage is also provided by the voids in the planting soil. The stored water and nutrients in the water and soil are then available to the plants for uptake. The layout of the bioretention area is determined after site constraints such as location of utilities, underlying soils, existing vegetation, and drainage are considered. Sites with loamy sand soils are especially appropriate for bioretention because the excavated soil can be backfilled and used as the planting soil, thus eliminating the cost of importing planting soil. An unstable surrounding soil stratum and soils with a clay content greater than 25 percent may preclude the use of bioretention, as would a site with slopes greater than 20 percent or a site with mature trees that would be removed during construction of the best management practices.[4]

See also

References

  1. ^ a b United States Environmental Protection Agency (EPA). Washington, DC (1999). "Storm Water Technology Fact Sheet: Bioretention." Document No. EPA-832-F-99-012.
  2. ^ http://www.absmaterials.com/bioswales [dead link]
  3. ^ Clar, M. L., Barfield, B. J., & O’Connor, T. P. (2004). "Stormwater Best Management Practice Design Guide, Volume 2: Vegetative Biofilters." Cincinnati, OH: United States Environmental Protection Agency. Document no. EPA/600/R-04/121A.
  4. ^ Prince George's County Department of Environmental Resources, Largo, MD (2007). "Bioretention Manual." Chapter 1.
  • Davis, Allen P. (2007). "Field Performance of Bioretention: Water Quality". Environmental Engineering Science. 24 (8): 1048–1064. doi:10.1089/ees.2006.0190.
  • Liu, Jia; Sample, David J.; Bell, Cameron; Guan, Yuntao (2014). "Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater". Water. 6 (4): 1069–1099. doi:10.3390/w6041069.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Traver, Robert G.; Davis, Allen P.; Hunt, William F. (October 2007). "Bioretention and Bioinfiltration BMPs: Three researchers' experience". Stormwater. Santa Barbara, CA: Forester Media. ISSN 1531-0574. {{cite journal}}: Cite has empty unknown parameters: |ps=, |laydate=, |laysource=, and |laysummary= (help)