One specifies a multiparticle state of N non-interacting identical particles by writing the state as a sum of tensor products of N one-particle states. The tensor products must be alternating products or symmetric products of the underlying one-particle Hilbert space according to whether the particles are fermions or bosons. If the number of particles is variable, one constructs Fock space as the direct sum of the tensor product Hilbert spaces for each particle number.
Then it is possible to specify the same state in a new notation, the occupancy number notation, by specifying the number of particles in each possible one-particle state.
Let ki be an orthonormal basis of states in the underlying one-particle Hilbert space. This induces a corresponding basis of the Fock space called the "occupancy number basis". A quantum state in the Fock space is called a Fock state if it is an element of the occupancy number basis.
A Fock state satisfies an important criterion: for each i, the state is an eigenstate of the particle number operator corresponding to the i-th elementary state ki. The corresponding eigenvalue gives the number of particles in the state. This criterion nearly defines the Fock states (one must in addition select a phase factor).
A given Fock state is denoted by . In this expression, denotes number of particles in the i-th state ki, and the
particle number operator for the i-th state, , acts on the Fock state in the following way:
Hence the Fock state is an eigenstate of the number operator with eigenvalue .[2]: 478
Fock states form the most convenient basis of a Fock space. Elements of a Fock space which are superpositions of states of differing particle number (and thus not eigenstates of the number operator) are not Fock states. Thus, not all elements of a Fock space are referred to as "Fock states".
The definition of Fock state ensures that , i.e., measuring the number of particles in a Fock state always returns a definite value with no fluctuation.
Example using two particles
For any final state , any Fock state of two identical particles given by , and any operator, we have the following condition for indistinguishability:[3]: 191
Suppose, for a number operator given by , we have for bosons,
and for fermions
Hence, using number operator on a state, we can never identify the state whether it is a bosonic one or a fermionic one. For that we need different algebra, i.e., use of creation and annihilation operators.
Bosonic Fock state
Bosons, which are particles with integer spin, follow a simple rule: their composite eigenstate is symmetric[4] under operation by an exchange operator. For example, in a two particle system in the tensor product representation we have .
Boson Creation and Annihilation operators
We should be able to express the same symmetric property in this new Fock space representation. For this we introduce non-Hermitian bosonic creation and annihilation operators,[4] denoted by and respectively. The action of these operators on a Fock state are given by the following two equations:
We can generate any Fock state by operating on the vacuum state with an appropriate number of creation operators:
For a single mode Fock state, expressed as, ,
and,
Action of Number operator
The number operators for a bosonic system are given by , where [4]
Number operators are Hermitian operators.
Symmetric behaviour of Bosonic Fock states
The commutation relations of the creation and annihilation operators ensure that the bosonic Fock states have the appropriate symmetric behaviour under particle exchange. Here, exchange of particles between two states is done by annihilating one particle in one state and creating one in another.
If we start with a Fock state, ,
and want to shift a particle from state to state , then we operate the Fock state by in the following way:
Using the commutation relation we have,
So, the Bosonic Fock state behaves to be symmetric under operation by Exchange operator.
Fermionic Fock state
Fermion Creation and Annihilation operators
To be able to retain the antisymmetric behaviour of fermions, for Fermionic fock states we introduce non-Hermitian Fermion Creation and annihilation operators,[4] defined as, for a Fermionic fock state, ,
Creation operator acts as:
where is the anticommutator and is the Kronecker delta.
These anticommutation relation will be used to show antisymmetric behaviour of Fermionic Fock states.
Action of Number operator, as well as, creation and annihilation operators might seem same as the Bosonic ones, but the real twist comes from the maximum occupation number of each state in the Fermionic Fock state.
Suppose, a Fermionic Fock state be obtained by using some operator from the tensor product of eigenkets as follows:
This determinant is called Slater determinant. If any of the single particle states are same, two rows of the Slater determinant would be same and hence the determinant would be zero. Hence, two identical fermions must not occupy the same state. Therefore, occupation number of any single state is either 0 or 1.
Eigenvalue of fermionic Fock state will be either 0 or 1.
For a single mode fermionic Fock state, expressed as, ,
and, , as maximum occupation number of any state is 1, more than 1 fermions cannot occupy the same state.
For a single mode fermionic Fock state, expressed as, ,
and, , as particle number cannot be less than zero.
For a multimode fermionic Fock state, expressed as,
,
where, is called Jordan-Wigner String, which depends on the ordering of the involved single-particle states and counting of fermion occupation number of all preceding states.[5]: 88
Antisymmetric behaviour of Fermionic Fock state
Antisymmetric behaviour of Fermionic states under Exchange operator is taken care of the anticommutation relations. Here, exchange of particles between two states is done by annihilating one particle in one state and creating one in other.
If we start with a Fock state, ,
and want to shift a particle from state to state , then we operate the Fock state by in the following way:
Using the anticommutation relation we have,
but,
So, the Fermionic Fock state behaves to be antisymmetric under operation by Exchange operator.
Only for non-interacting particles and commute; but in general they do not commute.
For non-interacting particles,
If they do not commute, Hamiltonian will not have the above expression. Therefore, in general, fock states are not energy eigenstates of a system.
Vacuum fluctuations
The vacuum state or is the state of lowest energy and the expectation values of and vanish in this state:
The electrical and magnetic fields and the vector potential have the mode expansion of the same general form:
Thus it is easy to see that the expectation values of these field operators vanishes in the vacuum state:
However, it can be shown that the expectation values of the square of these field operators is non-zero. Thus there are fluctuations in the field about the zero ensemble average. These vacuum fluctuations are responsible for many interesting phenomenon including the Lamb shift in quantum optics.
Multi-mode Fock states
In a multi-mode field each creation and annihilation operator operates on its own mode. So and will operate only on . Since operators corresponding to different modes operate in different sub-spaces of the Hilbert space, the entire field is a direct product of over all the modes:
The creation and annihilation operators operate on the multi-mode state by only raising or lowering the number state of their own mode:
We also define the total number operator for the field which is a sum of number operators of each mode:
The multi-mode Fock state is an eigenvector of the total number operator whose eigenvalue is the total occupation number of all the modes
In case of non-interacting particles, number operator and Hamiltonian commute with each other and hence multi-mode Fock states become eigenstates of the multi-mode Hamiltonian
Source of single photon state
Single photons are routinely generated using single emitters (atoms, Nitrogen-vacancy center
,[8]Quantum dot[9]). However, these sources are not always very efficient (low probability of actually getting a single photon on demand) and often complex and unsuitable out of a laboratory environment.
Other sources are commonly used that overcome these issues at the expense of a nondeterministic behavior. Heralded single photon sources are probabilistic two-photon sources from whom the pair is split and the detection of one photon heralds the presence of the remaining one. These sources usually rely on the optical nonlinearity of some materials like periodically poled Lithium niobate (Spontaneous parametric down-conversion), or silicon (spontaneous Four-wave mixing) for example.
Non-classical behaviour
The Glauber-Sudarshan P-representation of Fock states shows that these states are purely quantum mechanical and have no classical counterpart. The of these states in the representation is a 'th derivative of the Dirac delta function and therefore not a classical probability distribution.
^C. Kurtsiefer, S. Mayer, P. Zarda, Patrick and H. Weinfurter, (2000), "Stable Solid-State Source of Single Photons",
Phys. Rev. Lett.85 (2) 290--293, doi 10.1103/PhysRevLett.85.290
^C. Santori, M. Pelton, G. Solomon, Y. Dale and Y. Yamamoto (2001), "Triggered Single Photons from a Quantum Dot", Phys. Rev. Lett.86 (8):1502--1505 DOI 10.1103/PhysRevLett.86.1502