Jump to content

1,2-Dichloroethane

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 24.153.239.250 (talk) at 21:25, 2 June 2016 (The abbreviation for dichloroethane is DCA (DCE is dichloroethene/dichloroethylene)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

1,2-Dichloroethane
1,2-Dichloroethane
1,2-Dichloroethane
1,2-Dichloroethane
1,2-Dichloroethane
Names
IUPAC name
1,2-Dichloroethane
Other names
Ethylene dichloride
Ethane dichloride
Dutch liquid, Dutch oil
Freon 150
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.145 Edit this at Wikidata
KEGG
RTECS number
  • KI0525000
UNII
  • InChI=1S/C2H4Cl2/c3-1-2-4/h1-2H2 ☒N
    Key: WSLDOOZREJYCGB-UHFFFAOYSA-N ☒N
  • ClCCCl
Properties
C2H4Cl2
Molar mass 98.95 g·mol−1
Appearance Colorless liquid
Odor characteristic, pleasant chloroform-like odor[1]
Density 1.253 g/cm3, liquid
Melting point −35 °C (−31 °F; 238 K)
Boiling point 84 °C (183 °F; 357 K)
0.87 g/100 mL (20 °C)
Viscosity 0.84 mPa·s at 20 °C
Structure
1.80 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic, flammable, carcinogenic
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
3
0
Flash point 13 °C (55 °F; 286 K)
Explosive limits 6.2%-16%[1]
Lethal dose or concentration (LD, LC):
3000 ppm (guinea pig, 7 hr)
1000 ppm (rat, 7 hr)[2]
1217 ppm (mouse, 2 hr)
1000 ppm (rat, 4 hr)
3000 ppm (rabbit, 7 hr)[2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 50 ppm C 100 ppm 200 ppm [5-minute maximum peak in any 3 hours][1]
REL (Recommended)
Ca TWA 1 ppm (4 mg/m3) ST 2 ppm (8 mg/m3)[1]
IDLH (Immediate danger)
Ca [50 ppm][1]
Related compounds
Related haloalkanes
Methyl chloride
Methylene chloride
1,1,1-Trichloroethane
Related compounds
Ethylene
Chlorine
Vinyl chloride
Supplementary data page
1,2-Dichloroethane (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

The chemical compound 1,2-dichloroethane (DCA) commonly known by its old name of ethylene dichloride (EDC), is a chlorinated hydrocarbon. The most common use of 1,2-dichloroethane is in the production of vinyl chloride which is used to make a variety of plastic and vinyl products including polyvinyl chloride (PVC) pipes, furniture and automobile upholstery, wall coverings, housewares, and automobile parts.[3] It is a colourless liquid with a chloroform-like odour. 1,2-Dichloroethane is also used generally as an intermediate for other organic chemical compounds and as a solvent. It forms azeotropes with many other solvents, including water (b.p. 70.5 °C) and other chlorocarbons.[4]

History

In 1794, physician Jan Rudolph Deiman, merchant Adriaan Paets van Troostwijk, chemist Anthoni Lauwerenburg, and botanist Nicolaas Bondt, under the name of Gezelschap der Hollandsche Scheikundigen (Dutch: Society of Dutch Chemists), were the first to produce 1,2-dichloroethane from olefiant gas (oil-making gas, ethylene) and chlorine gas.[5] Although the Gezelschap in practice did not do much in-depth scientific research, they and their publications were highly regarded. Part of that acknowledgement is that 1,2-dichloroethane was called "Dutch oil" in old chemistry.

Production

Nearly 20 million tons of 1,2-dichloroethane are produced in the United States, Western Europe, and Japan.[6] Production is primarily achieved through the iron(III) chloride-catalysed reaction of ethene (ethylene) and chlorine.

H2C=CH2 + Cl2 → ClCH2-CH2Cl

1,2-dichloroethane is also generated by the copper(II) chloride-catalysed oxychlorination of ethylene:

2 H2C=CH2 + 4 HCl + O2 → 2 ClCH2-CH2Cl + 2 H2O

In principle, it can be prepared by the chlorination of ethane and, less directly, from ethanol.

Uses

Vinyl chloride monomer (VCM) production

With approximately 80% of the world's consumption of 1,2-dichloroethane, the major use of 1,2-dichloroethane is in the production of vinyl chloride monomer (VCM, chloroethene) with hydrogen chloride as a byproduct. VCM is the precursor to polyvinyl chloride.

Cl-CH2-CH2-Cl → H2C=CH-Cl + HCl

The hydrogen chloride can be re-used in the production of more 1,2-dichloroethane via the oxychlorination route described above.

Other uses

As a good polar aprotic solvent, 1,2-dichloroethane could be used as degreaser and paint remover but is now banned from use due to its toxicity and carcinogenity. As a useful 'building block' reagent, it is used as an intermediate in the production of various organic compounds such as ethylenediamine. In the laboratory it is occasionally used as a source of chlorine, with elimination of ethene and chloride.

Via several steps, 1,2-dichloroethane is a precursor to 1,1,1-trichloroethane, which is used in dry cleaning. Historically, 1,2-dichloroethane was used as an anti-knock additive in leaded fuels.[7]

Safety

1,2-Dichloroethane is toxic (especially by inhalation due to its high vapour pressure), highly flammable,[8] and carcinogenic. Its high solubility and 50-year half-life in anoxic aquifers make it a perennial pollutant and health risk that is very expensive to treat conventionally, requiring a method of bioremediation.[9] While the chemical is not used in consumer products manufactured in the U.S., a case was reported in 2009 of molded plastic consumer products (toys and holiday decorations) from China that released 1,2-dichloroethane into homes at levels high enough to produce cancer risk.[10][11] Substitutes are recommended and will vary according to application. Dioxolane and toluene are possible substitutes as solvents. Dichloroethane is unstable in the presence of aluminium metal and, when moist, with zinc and iron.

References

  1. ^ a b c d e NIOSH Pocket Guide to Chemical Hazards. "#0271". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ a b "Ethylene dichloride". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^ "ATSDR - Toxic Substances - 1,2-Dichloroethane". www.atsdr.cdc.gov. Retrieved 23 September 2015.
  4. ^ Manfred Rossberg, Wilhelm Lendle, Gerhard Pfleiderer, Adolf Tögel, Eberhard-Ludwig Dreher, Ernst Langer, Heinz Rassaerts, Peter Kleinschmidt, Heinz Strack, Richard Cook, Uwe Beck, Karl-August Lipper, Theodore R. Torkelson, Eckhard Löser, Klaus K. Beutel, Trevor Mann "Chlorinated Hydrocarbons" in Ullmann's Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a06_233.pub2
  5. ^ Deimann, van Troostwyk, Bondt and Louwrenburgh (1795) "Ueber die Gasarten, welche man aus Verbindungen von starker Vitriolsäure und Alkohol erhält" (On the types of gases which one obtains from combinations of strong vitriolic acid and alcohol), Chemische Annalen … , 2 : 195-205, 310-316, 430-440. The production and characterization of 1,2-dichloroethane appear on pages 200-202. The investigators were trying to detect the presence of carbon (Kohl) in ethylene (Luft, literally, "air") by adding chlorine (zündend Salzgas, literally, "burning gas from salt"). Instead of the expected soot, an oil (Oehl) formed.
  6. ^ J.A. Field; R. Sierra-Alvarez (2004). "Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds". Rev. Environ. Sci. Biotechnol. 3 (3): 185–254. doi:10.1007/s11157-004-4733-8. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  7. ^ Seyferth, D. (2003). "The Rise and Fall of Tetraethyllead. 2". Organometallics. 22 (25): 5154–5178. doi:10.1021/om030621b.
  8. ^ "1,2-Dichoroethane MSDS." Mallinckrodt Chemicals. 19 May 2008. Web. <http://hazard.com/msds/mf/baker/baker/files/d2440.htm>.
  9. ^ S. De Wildeman; W. Verstraete (25 March 2003). "The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted". Appl. Microbiol. Biotechnol. 61 (2): 94–102. doi:10.1007/s00253-002-1174-6. PMID 12655450. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  10. ^ Toxic Christmas: Plastic Ornaments May Pollute Your Air
  11. ^ Doucette, WJ; Hall, AJ; Gorder, KA (Winter 2010). "Emissions of 1, 2-Dichloroethane from Holiday Decorations as a Source of Indoor Air Contamination". Ground Water Monitoring & Remediation. 30 (1): 67–73. doi:10.1111/j.1745-6592.2009.01267.x. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)