Jump to content

Thyroid's secretory capacity

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 134.147.157.18 (talk) at 16:11, 30 April 2019 (Abbreviations). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Thyroid's secretory capacity
SynonymsSPINA-GT, GT, T4 output, thyroid hormone output, thyroid's incretory capacity
Reference range1.41–8.67 pmol/s
Test ofMaximum amount of T4 produced by the thyroid in one second
LOINC82368-2

Thyroid's secretory capacity (GT, also referred to as thyroid's incretory capacity, maximum thyroid hormone output, T4 output or, if calculated from serum levels of thyrotropin and thyroxine, as SPINA-GT) is the maximum stimulated amount of thyroxine that the thyroid can produce in a given time-unit (e.g. one second).[1][2]

How to determine GT

Experimentally, GT can be determined by stimulating the thyroid with a high thyrotropin concentration (e.g. by means of rhTSH, i.e. recombinant human thyrotropin) and measuring its output in terms of T4 production, or by measuring the serum concentration of protein-bound iodine-131 after administration of radioiodine.[3]

In vivo, GT can also be estimated from equilibrium levels of TSH and T4 or free T4. In this case it is calculated with

or

: Theoretical (apparent) secretory capacity (SPINA-GT)
: Dilution factor for T4 (reciprocal of apparent volume of distribution, 0.1 l−1)
: Clearance exponent for T4 (1.1e-6 sec−1)
K41: Dissociation constant T4-TBG (2e10 l/mol)
K42: Dissociation constant T4-TBPA (2e8 l/mol)
DT: EC50 for TSH (2.75 mU/l)[1][4]

Specific secretory capacity

The ratio of SPINA-GT and thyroid volume VT (as determined e.g. by ultrasonography)

,

i.e.

or

is referred to as specific thyroid capacity (SPINA-GTs)[5].

Reference Range

Lower limit Upper limit Unit
1.41[1] 8.67[1] pmol/s

The equations and their parameters are calibrated for adult humans with a body mass of 70 kg and a plasma volume of ca. 2.5 l.[1]

Clinical significance

Validity

SPINA-GT is elevated in primary hyperthyroidism[6] and reduced in both primary hypothyroidism[7][8][9] and untreated autoimmune thyroiditis.[10] It has been observed to correlate with resting energy expenditure[11] and thyroid volume.[1][5] Elevated SPINA-GT in Graves's disease is reversible with antithyroid treatment.[11] While SPINA-GT is significantly altered in primary thyroid disorders, it is insensitive to disorders of secondary nature (e.g. pure pituitary diseases)[2].

Reliability

In silico experiments with Monte Carlo simulations demonstrated that both SPINA-GT and SPINA-GD can be estimated with sufficient reliability, even if laboratory assays have limited accuracy[2]. This was confirmed by longitudinal in vivo studies that showed that GT has lower intraindividual variation (i.e. higher reliability) than TSH, FT4 or FT3.[12]

Clinical utility

In clinical trials SPINA-GT was significantly elevated in patients suffering from Graves' disease and toxic adenoma compared to normal subjects[1][6]. It is also elevated in diffuse and nodular goiters, and reduced in untreated autoimmune thyroiditis[1][10]. In patients with toxic adenoma it has higher specificity and positive likelihood ratio for diagnosis of thyrotoxicosis than serum concentrations of thyrotropin, free T4 or free T3[1]. GT's specificity is also high in thyroid disorders of secondary or tertiary origin[2].

Pathophysiological and therapeutic implications

Correlation of SPINA-GT with creatinine clearance suggested a negative influence of uremic toxins on thyroid biology.[13] In the initial phase of major non-thyroidal illness SPINA-GT may be temporarily elevated.[14] In certain chronic diseases, e.g. chronic fatigue syndrome, SPINA-GT ist slightly reduced.[15]

In women, therapy with Metformin results in increased SPINA-GT, in parallel to improved insulin sensitivity.[16] In hyperthyroid[6] men both SPINA-GT and SPINA-GD negatively correlate to erectile function, intercourse satisfaction, orgasmic function and sexual desire. Likewise, in women suffering from thyrotoxicosis elevated thyroid's secretory capacity predicts depression and sexual dysfunction[17].

In patients with autoimmune thyroiditis a gluten-free diet results in increased SPINA-GT (in parallel to sinking autoantibody titres).[18] Statin therapy has the same effect, but only if supply with vitamin D is sufficient.[19] Accordingly, substitution therapy with 25-hydroxyvitamin D leads to rising secretory capacity[20][21][22]. This effect is potentiated by substitution therapy with selenomethionine[20][21].

Specific secretory capacity (SPINA-GTs) is reduced in obesity[1] and autoimmune thyroiditis.[5][23]

See also

References

  1. ^ a b c d e f g h i j Dietrich, J. W. (2002). Der Hypophysen-Schilddrüsen-Regelkreis. Berlin, Germany: Logos-Verlag Berlin. ISBN 978-3-89722-850-4. OCLC 50451543.
  2. ^ a b c d Dietrich, Johannes W.; Landgrafe-Mende, Gabi; Wiora, Evelin; Chatzitomaris, Apostolos; Klein, Harald H.; Midgley, John E. M.; Hoermann, Rudolf (9 June 2016). "Calculated Parameters of Thyroid Homeostasis: Emerging Tools for Differential Diagnosis and Clinical Research". Frontiers in Endocrinology. 7: 57. doi:10.3389/fendo.2016.00057. PMC 4899439. PMID 27375554.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Bierich, J. R. (1964). "Endokrinologie". In H. Wiesener (ed.). Einführung in die Entwicklungsphysiologie des Kindes. Springer. p. 310. ISBN 978-3-642-86507-7.
  4. ^ Dietrich JW, Stachon A, Antic B, Klein HH, Hering S (Oct 2008). "The AQUA-FONTIS study: protocol of a multidisciplinary, cross-sectional and prospective longitudinal study for developing standardized diagnostics and classification of non-thyroidal illness syndrome". BMC Endocrine Disorders. 8 (1): 13. doi:10.1186/1472-6823-8-13. PMC 2576461. PMID 18851740.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  5. ^ a b c Hoermann, Rudolf; Midgley, John E.M.; Larisch, Rolf; Dietrich, Johannes W. (18 August 2016). "Relational Stability of Thyroid Hormones in Euthyroid Subjects and Patients with Autoimmune Thyroid Disease". European Thyroid Journal. 5 (3): 171–179. doi:10.1159/000447967. PMC 5091265. PMID 27843807.
  6. ^ a b c Krysiak, R; Marek, B; Okopień, B (2019). "Sexual function and depressive symptoms in men with overt hyperthyroidism". Endokrynologia Polska. 70 (1): 64–71. doi:10.5603/EP.a2018.0069. PMID 30307028.
  7. ^ Dietrich, J.; Fischer, M.; Jauch, J.; Pantke, E.; Gärtner, R.; Pickardt, C. R. "SPINA-THYR: A Novel Systems Theoretic Approach to Determine the Secretion Capacity of the Thyroid Gland". European Journal of Internal Medicine. 10 (Suppl. 1): S34.
  8. ^ Dietrich JW (Sep 2012). "Thyroid storm". Medizinische Klinik, Intensivmedizin und Notfallmedizin. 107 (6): 448–53. doi:10.1007/s00063-012-0113-2. PMID 22878518.
  9. ^ Wang, X; Liu, H; Chen, J; Huang, Y; Li, L; Rampersad, S; Qu, S (21 April 2016). "Metabolic Characteristics in Obese Patients Complicated by Mild Thyroid Hormone Deficiency". Hormone and Metabolic Research. 48 (5): 331–7. doi:10.1055/s-0042-105150. PMID 27101096.
  10. ^ a b Hoermann, R; Midgley, JEM; Larisch, R; Dietrich, JW (19 July 2018). "The Role of Functional Thyroid Capacity in Pituitary Thyroid Feedback Regulation". European Journal of Clinical Investigation. 48 (10): e13003. doi:10.1111/eci.13003. PMID 30022470.
  11. ^ a b Kim, Min Joo; Cho, Sun Wook; Choi, Sumin; Ju, Dal Lae; Park, Do Joon; Park, Young Joo (2018). "Changes in Body Compositions and Basal Metabolic Rates during Treatment of Graves' Disease". International Journal of Endocrinology. 2018: 1–8. doi:10.1155/2018/9863050. PMC 5960571. PMID 29853888.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. ^ Dietrich JW, Landgrafe G, Fotiadou EH (2012). "TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis". Journal of Thyroid Research. 2012: 351864. doi:10.1155/2012/351864. PMC 3544290. PMID 23365787.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  13. ^ Rosolowska-Huszcz D, Kozlowska L, Rydzewski A (Aug 2005). "Influence of low protein diet on nonthyroidal illness syndrome in chronic renal failure". Endocrine. 27 (3): 283–8. doi:10.1385/endo:27:3:283. PMID 16230785.
  14. ^ Liu S, Ren J, Zhao Y, Han G, Hong Z, Yan D, Chen J, Gu G, Wang G, Wang X, Fan C, Li J (2013). "Nonthyroidal Illness Syndrome: ist it Far Away From Crohn's Disease?". Journal of Clinical Gastroenterology. 47 (2): 153–9. doi:10.1097/MCG.0b013e318254ea8a. PMID 22874844.
  15. ^ Ruiz-Núñez, Begoña; Tarasse, Rabab; Vogelaar, Emar F.; Janneke Dijck-Brouwer, D. A.; Muskiet, Frits A. J. (20 March 2018). "Higher Prevalence of "Low T3 Syndrome" in Patients With Chronic Fatigue Syndrome: A Case–Control Study". Frontiers in Endocrinology. 9: 97. doi:10.3389/fendo.2018.00097. PMC 5869352. PMID 29615976.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ Krysiak, R; Szkróbka, W; Okopień, B (June 2018). "Sex-Dependent Effect of Metformin on Serum Prolactin Levels In Hyperprolactinemic Patients With Type 2 Diabetes: A Pilot Study". Experimental and Clinical Endocrinology & Diabetes. 126 (6): 342–348. doi:10.1055/s-0043-122224. PMID 29169197.
  17. ^ Krysiak, R; Kowalcze, K; Okopień, B (9 January 2019). "Sexual function and depressive symptoms in young women with overt hyperthyroidism". European Journal of Obstetrics, Gynecology, and Reproductive Biology. 234: 43–48. doi:10.1016/j.ejogrb.2018.12.035. PMID 30654201.
  18. ^ Krysiak, R; Szkróbka, W; Okopień, B (30 July 2018). "The Effect of Gluten-Free Diet on Thyroid Autoimmunity in Drug-Naïve Women with Hashimoto's Thyroiditis: A Pilot Study". Experimental and Clinical Endocrinology & Diabetes. doi:10.1055/a-0653-7108. PMID 30060266.
  19. ^ Krysiak, R; Szkróbka, W; Okopień, B (27 August 2018). "The Relationship Between Statin Action On Thyroid Autoimmunity And Vitamin D Status: A Pilot Study". Experimental and Clinical Endocrinology & Diabetes. 127 (1): 23–28. doi:10.1055/a-0669-9309. PMID 30149415.
  20. ^ a b Krysiak, Robert; Szkróbka, Witold; Okopień, Bogusław (October 2018). "The effect of vitamin D and selenomethionine on thyroid antibody titers, hypothalamic-pituitary-thyroid axis activity and thyroid function tests in men with Hashimoto's thyroiditis: a pilot study". Pharmacological Reports. 71 (2): 243–7. doi:10.1016/j.pharep.2018.10.012. PMID 30818086.
  21. ^ a b Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (December 2018). "Selenomethionine potentiates the impact of vitamin D on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis and low vitamin D status". Pharmacological Reports. 71 (2): 367–73. doi:10.1016/j.pharep.2018.12.006. PMID 30844687.
  22. ^ Krysiak, Robert; Kowalcze, Karolina; Okopień, Bogusław (April 2019). "The effect of vitamin D on thyroid autoimmunity in euthyroid men with autoimmune thyroiditis and testosterone deficiency". Pharmacological Reports. doi:10.1016/j.pharep.2019.04.010.
  23. ^ Hoermann, Rudolf; Midgley, John E. M.; Larisch, Rolf; Dietrich, Johannes W. (7 November 2016). "Relational Stability in the Expression of Normality, Variation, and Control of Thyroid Function". Frontiers in Endocrinology. 7: 142. doi:10.3389/fendo.2016.00142. PMC 5098235. PMID 27872610.{{cite journal}}: CS1 maint: unflagged free DOI (link)