Jump to content

Carnosine: Difference between revisions

Page 1
Page 2
Content deleted Content added
CheMoBot (talk | contribs)
Updating {{chembox}} (no changed fields - added verified revid - updated 'DrugBank_Ref', 'ChEBI_Ref') per Chem/Drugbox validation (report errors or [[user
Added free to read link in citations with OAbot #oabot
 
(189 intermediate revisions by more than 100 users not shown)
Line 1: Line 1:
{{short description|Chemical compound}}
{{distinguish|carnitine}}

{{chembox
{{chembox
| Watchedfields = changed
| verifiedrevid = 443505972
| verifiedrevid = 443507179
|Reference=<ref>{{cite web |url=http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/C9625 |title=C9625 L-Carnosine ~99%, crystalline |publisher=[[Sigma-Aldrich]]}}</ref>
| Reference =
| ImageFile_Ref = {{chemboximage|correct|??}}
| ImageFile_Ref = {{chemboximage|correct|??}}
| ImageFile= Carnosine-2D-skeletal.png
| ImageFile = Carnosine.svg
| IUPACName = β-Alanylhistidine
|ImageSize=200px
|IUPACName=(2''S'')-2-[(3-Amino-1-oxopropyl)amino]-3-(3''H''-imidazol-4-yl)propanoic acid
| SystematicName = (2''S'')-2-(3-Aminopropanamido)-3-(3''H''-imidazol-4-yl)propanoic acid
|OtherNames=β-Alanyl-L-histidine
| OtherNames = β-Alanyl-<small>L</small>-histidine
|Section1= {{Chembox Identifiers
| Section1 = {{Chembox Identifiers
| IUPHAR_ligand = 4559
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 388363
| ChemSpiderID = 388363
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII_Ref = {{fdacite|correct|FDA}}
Line 24: Line 29:
| SMILES1 = c1c(nc[nH]1)C[C@@H](C(=O)O)NC(=O)CCN
| SMILES1 = c1c(nc[nH]1)C[C@@H](C(=O)O)NC(=O)CCN
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo=305-84-0
| CASNo = 305-84-0
| PubChem=439224
| PubChem = 439224
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 57485
| ChEBI = 15727
| SMILES = O=C(O)C(NC(=O)CCN)Cc1cncn1
| SMILES = O=C(O)C(NC(=O)CCN)Cc1c[nH]cn1
}}
}}

|Section2= {{Chembox Properties
| Section2 = {{Chembox Properties
| Formula=C<sub>9</sub>H<sub>14</sub>N<sub>4</sub>O<sub>3</sub>
| C=9 | H=14 | N=4 | O=3
| MolarMass=226.23
| Appearance=Crystalline solid
| Appearance = Crystalline solid
| Density=
| Density =
| MeltingPtC = 253
| MeltingPt=253 °C (decomposition)
| MeltingPt_notes = (decomposition)
| BoilingPt=
| BoilingPt =
| Solubility=
| Solubility =
}}
}}

|Section3= {{Chembox Hazards
| Section3 = {{Chembox Hazards
| MainHazards=
| MainHazards =
| FlashPt=
| FlashPt =
| Autoignition=
| AutoignitionPt =
}}
}}
}}
}}
: ''Carnosine should not be confused with [[Carnitine]]''.


'''Carnosine''' (''beta''-alanyl-L-histidine) is a [[dipeptide]] of the [[amino acids]] [[beta-alanine]] and [[histidine]]. It is highly concentrated in [[muscle]] and [[brain]] [[biological tissue|tissue]]s.
'''Carnosine''' (''beta''-alanyl-<small>L</small>-histidine) is a [[dipeptide]] molecule, made up of the [[amino acid]]s [[beta-Alanine|beta-alanine]] and [[histidine]]. It is highly concentrated in [[muscle]] and [[brain]] [[biological tissue|tissue]]s.{{citation needed|date=June 2020}} Carnosine was discovered by Russian chemist [[Vladimir Gulevich]].<ref>{{cite journal |doi=10.1002/cber.19000330275 |title=Ueber das Carnosin, eine neue organische Base des Fleischextractes |year=1900 |last1=Gulewitsch |first1=Wl. |last2=Amiradžibi |first2=S. |journal=Berichte der Deutschen Chemischen Gesellschaft |volume=33 |issue=2 |pages=1902–1903|url=https://zenodo.org/record/1425978 }}</ref>


Carnosine is naturally produced by the body in the liver<ref>{{Cite journal|last1=Trexler|first1=Eric T.|last2=Smith-Ryan|first2=Abbie E.|last3=Stout|first3=Jeffrey R.|last4=Hoffman|first4=Jay R.|last5=Wilborn|first5=Colin D.|last6=Sale|first6=Craig|last7=Kreider|first7=Richard B.|last8=Jäger|first8=Ralf|last9=Earnest|first9=Conrad P.|last10=Bannock|first10=Laurent|last11=Campbell|first11=Bill|date=2015-07-15|title=International society of sports nutrition position stand: Beta-Alanine|journal=Journal of the International Society of Sports Nutrition|volume=12|page=30|doi=10.1186/s12970-015-0090-y|issn=1550-2783|pmc=4501114|pmid=26175657 |doi-access=free }}</ref> from [[Β-Alanine|beta-alanine]] and [[histidine]]. Like [[carnitine]], carnosine is composed of the root word ''carn'', meaning "flesh", alluding to its prevalence in meat.<ref>{{Cite journal|last1=Hipkiss|first1=A. R.|year=2006|title=Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works?|journal=Annals of the New York Academy of Sciences|volume=1067|issue=1|pages=361–8|bibcode=2006NYASA1067..361H|doi=10.1196/annals.1354.051|pmid=16804012|s2cid=41175541}}</ref> There are no plant-based sources of carnosine.<ref>{{cite book|author=Alan R. Hipkiss|title=Advances in Food and Nutrition Research|date=2009|chapter=Chapter 3: Carnosine and Its Possible Roles in Nutrition and Health}}</ref> Carnosine is readily available as a synthetic nutritional supplement.
Researchers in Britain,<ref>{{cite journal |author=Aruoma OI, Laughton MJ, Halliwell B |title=Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? |journal=[[The Biochemical Journal]] |volume=264 |issue=3 |pages=863–9 |year=1989 |month=December |pmid=2559719 |pmc=1133665}}</ref> South Korea,<ref>{{cite journal |author=Choi SY, Kwon HY, Kwon OB, Kang JH |title=Hydrogen peroxide-mediated Cu,Zn-superoxide dismutase fragmentation: protection by carnosine, homocarnosine and anserine |journal=Biochimica et Biophysica Acta |volume=1472 |issue=3 |pages=651–7 |year=1999 |month=November |pmid=10564779 |doi=10.1016/S0304-4165(99)00189-0}}</ref> Russia<ref>{{cite journal |author=Klebanov GI, Teselkin YuO, Babenkova IV, ''et al.'' |title=Effect of carnosine and its components on free-radical reactions |journal=[[Membrane & Cell Biology]] |volume=12 |issue=1 |pages=89–99 |year=1998 |pmid=9829262}}</ref><ref>{{cite journal |author=Babizhayev MA, Seguin MC, Gueyne J, Evstigneeva RP, Ageyeva EA, Zheltukhina GA |title=L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities |journal=The Biochemical Journal |volume=304 |issue=2 |pages=509–16 |year=1994 |month=December |pmid=7998987 |pmc=1137521}}</ref> and other countries<ref>{{cite journal |author=Chan KM, Decker EA |title=Endogenous skeletal muscle antioxidants |journal=[[Critical Reviews in Food Science and Nutrition]] |volume=34 |issue=4 |pages=403–26 |year=1994 |pmid=7945896 |doi=10.1080/10408399409527669}}</ref><ref>{{cite journal |author=Kohen R, Yamamoto Y, Cundy KC, Ames BN |title=Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |volume=85 |issue=9 |pages=3175–9 |year=1988 |month=May |pmid=3362866 |pmc=280166 |doi=10.1073/pnas.85.9.3175}}</ref> have shown that carnosine has a number of [[antioxidant]] properties that may be beneficial. Carnosine has been proven to scavenge reactive oxygen species (ROS) as well as alpha-beta unsaturated [[aldehydes]] formed from peroxidation of cell membrane [[fatty acids]] during [[oxidative stress]].


==Biosynthesis==
Carnosine can oppose [[glycation]]<ref>{{cite journal |author=Reddy VP, Garrett MR, Perry G, Smith MA |title=Carnosine: a versatile antioxidant and antiglycating agent |journal=[[Science of Aging Knowledge Environment]] |volume=2005 |issue=18 |pages=pe12 |year=2005 |month=May |pmid=15872311 |doi=10.1126/sageke.2005.18.pe12}}</ref><ref>{{cite journal |author=Rashid I, van Reyk DM, Davies MJ |title=Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro |journal=[[FEBS Letters]] |volume=581 |issue=5 |pages=1067–70 |year=2007 |month=March |pmid=17316626 |doi=10.1016/j.febslet.2007.01.082}}</ref> and it can [[chelate]] [[valency (chemistry)|divalent]] metal ions. Chronic glycolysis is suspected to accelerate aging.<ref>{{cite journal |author=Hipkiss AR |title=Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works? |journal=[[Annals of the New York Academy of Sciences]] |volume=1067 |issue= |pages=361–8 |year=2006 |month=May |pmid=16804012 |doi=10.1196/annals.1354.051}}</ref> Carnosine was found to inhibit diabetic nephropathy by protecting the podocytes and mesangial cells.<ref>{{cite journal |author=Janssen B, Hohenadel D, Brinkkoetter P, ''et al.'' |title=Carnosine as a protective factor in diabetic nephropathy: association with a leucine repeat of the carnosinase gene CNDP1 |journal=[[Diabetes (journal)|Diabetes]] |volume=54 |issue=8 |pages=2320–7 |year=2005 |month=August |pmid=16046297 |doi=10.2337/diabetes.54.8.2320}}</ref> Because of its antioxidant, antiglycator and metal chelator properties, carnosine supplements have been proposed as a general [[anti-aging]] therapy.<ref>http://www.antiaging-systems.com/extract/kyriazis.htm</ref>
Carnosine is synthesized within the body from [[Β-Alanine|beta-alanine]] and [[histidine]]. Beta-alanine is a product of [[pyrimidine catabolism]]<ref>{{Cite web|last=|first=|date=|title=beta-ureidopropionate + H2O => beta-alanine + NH4+ + CO2|url=https://reactome.org/PathwayBrowser/#/R-HSA-8956319&SEL=R-HSA-73591&PATH=R-HSA-1430728,R-HSA-15869|url-status=live|archive-url=https://web.archive.org/web/20131023004813/http://www.reactome.org:80/PathwayBrowser/ |archive-date=2013-10-23 |access-date=2020-02-08|website=reactome|quote=Cytosolic 3-ureidopropionase catalyzes the reaction of 3-ureidopropionate and water to form beta-alanine, CO2, and NH3 (van Kuilenberg et al. 2004).}}</ref> and histidine is an [[essential amino acid]]. Since beta-alanine is the limiting substrate, supplementing just beta-alanine effectively increases the intramuscular concentration of carnosine.<ref>{{cite journal|vauthors=Derave W, Ozdemir MS, Harris R, Pottier A, Reyngoudt H, Koppo K, Wise JA, Achten E |s2cid=6990201 |title=Beta-alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters |journal=J Appl Physiol |date=August 9, 2007 |pmid = 17690198 |doi=10.1152/japplphysiol.00397.2007 |volume=103|issue=5 |pages=1736–43 }}</ref><ref name="Hill2007">{{cite journal|vauthors=Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, Kim CK, Wise JA |title=Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity |journal= Amino Acids |year=2007 |issue=2 |volume=32 |pages=225–33 |pmid =16868650 |doi=10.1007/s00726-006-0364-4 |s2cid=23988054 }}</ref>
Carnosine containing products are also used in topical preparations to reduce wrinkles on the skin.<ref>http://www.ncbi.nlm.nih.gov/pubmed/19735523 J Cosmet Dermatol. 2009 Sep;8(3):228-33. Efficacy of anti-aging products for periorbital wrinkles as measured by 3-D imaging</ref>


==Physiological effects==
Some studies have detected beneficial effects of N-[[acetyl-carnosine]] in preventing and treating cataracts of the eyes; in one of these, carnosine was found to reduce cloudiness in rat lenses that were exposed to guanidine to cause cataracts.<ref>{{cite journal |author=Attanasio F, Cataldo S, Fisichella S, ''et al.'' |title=Protective effects of L- and D-carnosine on alpha-crystallin amyloid fibril formation: implications for cataract disease |journal=[[Biochemistry (journal)|Biochemistry]] |volume=48 |issue=27 |pages=6522–31 |year=2009 |month=July |pmid=19441807 |doi=10.1021/bi900343n}}</ref> However, claims that carnosine confers these and other posited ophthalmological benefits are, as of yet, insufficiently supported for endorsement by the mainstream medical community; Britain's Royal College of Ophthalmologists, for instance, has asserted that neither safety nor efficacy has been sufficiently demonstrated to recommend carnosine's use as a topical treatment for cataracts.<ref>{{cite web |url=http://www.rcophth.ac.uk/docs/publications/published-guidelines/N_ACETYL-CARNOSINE_FOR_CATARACTS.pdf |title=N-Acetyl Carnosine for Cataracts |first=Winfried |last=Amoaku |publisher=Royal College of Ophthalmologists |date=August 6, 2008}}</ref>


=== pH buffer ===
A small 2002 study reported that carnosine improved socialization and receptive vocabulary in children with [[autism]].<ref>{{cite journal |author=Chez MG, Buchanan CP, Aimonovitch MC, ''et al.'' |title=Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders |journal=[[Journal of Child Neurology]] |volume=17 |issue=11 |pages=833–7 |year=2002 |month=November |pmid=12585724 |doi=10.1177/08830738020170111501}}</ref> Improvement in this study could have been due to maturation, educational interventions, placebo effect, or other confounds that were not addressed in the study design.<ref>{{cite journal |author=Levy SE, Hyman SL |title=Novel treatments for autistic spectrum disorders |journal=[[Mental Retardation and Developmental Disabilities Research Reviews]] |volume=11 |issue=2 |pages=131–42 |year=2005 |pmid=15977319 |doi=10.1002/mrdd.20062}}</ref> In animal models, supplemental carnosine can increase [[corticosterone]] levels, which may explain the [[hyperactivity]] sometimes seen in high doses.<ref>{{cite web |url=http://www.sciencedirect.com/science/article/B6SYT-4BP9PC3-1/2/bc6bfe64185c28814fb02b218a8cfa16 |title=Effect of central administration of carnosine and its constituents on behaviors in chicks |first=Shozu, et al. |last= Tomonaga |publisher=Royal College of Ophthalmologists |date=August 6, 2008}}</ref> However, the aforementioned study used carnosine injected into chicks intracerebroventricularly, and a raise in corticosterone levels has not yet been found in humans.
Carnosine has a pK<sub>a</sub> value of 6.83, making it a good [[Buffer solution|buffer]] for the pH range of animal muscles.<ref>{{Cite journal | last1 = Bate-Smith | first1 = EC | year = 1938 | title = The buffering of muscle in rigor: protein, phosphate and carnosine | journal = Journal of Physiology | volume = 92 | issue = 3| pages = 336–343 | pmid = 16994977 | pmc = 1395289 | doi = 10.1113/jphysiol.1938.sp003605 }}</ref> Since beta-alanine is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar). Occurring at 17–25&nbsp;mmol/kg (dry muscle),<ref>{{Cite journal | doi = 10.1007/BF00376439 | pmid = 1735411 | last1 = Mannion | first1 = AF | last2 = Jakeman | first2 = PM | last3 = Dunnett | first3 = M | last4 = Harris | first4 = RC | last5 = Willan | first5 = PLT | year = 1992 | title = Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans | journal = Eur. J. Appl. Physiol | volume = 64 | issue = 1| pages = 47–50 | s2cid = 24590951 }}</ref> carnosine (β-alanyl-<small>L</small>-histidine) is an important intramuscular buffer, constituting 10-20% of the total buffering capacity in type I and II muscle fibres.


=== Anti-oxidant ===
In animal models carnosine has been shown to retard cancer growth<ref>{{cite journal |author=Renner C, Zemitzsch N, Fuchs B, ''et al.'' |title=Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model |journal=[[Molecular Cancer]] |volume=9 |issue= |pages=2 |year=2010 |pmid=20053283 |pmc=2818694 |doi=10.1186/1476-4598-9-2}}</ref> and protect against alcohol-induced oxidative stress<ref>{{cite journal |author=Ozel Turkcu U, Bilgihan A, Biberoglu G, Mertoglu Caglar O |title=Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress |journal=[[Molecular and Cellular Biochemistry]] |volume= 339|issue= 1-2|pages= 55–61|year=2010 |month=January |pmid=20047045 |doi=10.1007/s11010-009-0369-x}}</ref> as well as ethanol-induced chronic liver damage.<ref>{{cite journal |author=Liu WH, Liu TC, Yin MC |title=Beneficial effects of histidine and carnosine on ethanol-induced chronic liver injury |journal=[[Food and Chemical Toxicology]] |volume=46 |issue=5 |pages=1503–9 |year=2008 |month=May |pmid=18222027 |doi=10.1016/j.fct.2007.12.013}}</ref> Carnosine is also neuroprotective against permanent cerebral ischemia in mice.<ref>{{cite journal |author=Min J, Senut MC, Rajanikant K, ''et al.'' |title=Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia |journal=[[Journal of Neuroscience Research]] |volume=86 |issue=13 |pages=2984–91 |year=2008 |month=October |pmid=18543335 |pmc=2805719 |doi=10.1002/jnr.21744}}</ref>
Carnosine has been shown to scavenge [[reactive oxygen species]] (ROS) as well as alpha-beta unsaturated [[aldehydes]] formed from peroxidation of cell membrane [[fatty acids]] during [[oxidative stress]]. It also buffers pH in muscle cells, and acts as a neurotransmitter in the brain. It is also a [[zwitterion]], a neutral molecule with a positive and negative end.{{citation needed|date=March 2018}}


===Antiglycating===
Carnosine can increase the [[Hayflick limit]] in human [[fibroblasts]],<ref>{{cite journal |author=McFarlan GA. |coauthors=Holliday R. |title=Retardation of the senescence of cultured human fibroblasts by carnosine |journal=Exp. Cell Res. |volume=212 |issue=2 |pages=167–175 |year=1994 |pmid=8187813 |doi=10.1006/excr.1994.1132}}</ref> as well as appearing to reduce the telomere shortening rate.<ref>{{cite journal |author=Shao L |coauthors=Li QH, Tan Z |title=L-carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. |journal= Biochem Biophys Res Commun. |year=2004 |volume=324 |issue=2 |pages=931–936 |pmid=15474517 |doi=10.1016/j.bbrc.2004.09.136}}</ref> This could potentially favor the growth of certain cancers that thrive due to telomere preservation.<ref>http://www.ncbi.nlm.nih.gov/pubmed/11327115 Telomerase activation, cellular immortalization and cancer, Ann Med. 2001 Mar;33(2):123-9</ref>
Carnosine acts as an antiglycating agent, reducing the rate of formation of [[advanced glycation end-products]] (substances that can be a factor in the development or worsening of many [[degenerative diseases]], such as [[diabetes]], [[atherosclerosis]], [[chronic kidney failure]], and [[Alzheimer's disease]]<ref>{{cite journal|last=Vistoli|first=G|author2=De Maddis, D|author3= Cipak, A|author4= Zarkovic, N|author5= Carini, M|author6= Aldini, G|title=Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation.|journal=Free Radic. Res.|date=Aug 2013|volume=47|pages=Suppl 1:3–27|pmid=23767955|doi=10.3109/10715762.2013.815348|s2cid=207517855|url=http://fulir.irb.hr/3540/|doi-access=free}}
</ref>), and ultimately reducing development of atherosclerotic plaque build-up.<ref name="pmid15872311">{{cite journal|last1=Reddy|first1=V. P.|last2=Garrett|first2=MR|last3=Perry|first3=G|last4=Smith|first4=MA|year=2005|title=Carnosine: A Versatile Antioxidant and Antiglycating Agent|journal=Science of Aging Knowledge Environment|volume=2005|issue=18|pages=pe12|doi=10.1126/sageke.2005.18.pe12|pmid=15872311}}</ref><ref>{{cite journal |doi=10.1016/j.febslet.2007.01.082 |title=Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro |year=2007 |last1=Rashid |first1=Imran |last2=Van Reyk |first2=David M. |last3=Davies |first3=Michael J. |journal=FEBS Letters |volume=581 |issue=5 |pages=1067–70 |pmid=17316626|s2cid=46535145 }}</ref><ref>{{Cite journal
| pmid = 15955546
| year = 2005
| last1 = Hipkiss
| first1 = A. R.
| title = Glycation, ageing and carnosine: Are carnivorous diets beneficial?
| journal = Mechanisms of Ageing and Development
| volume = 126
| issue = 10
| pages = 1034–9
| doi = 10.1016/j.mad.2005.05.002
| s2cid = 19979631
}}</ref>


=== Geroprotective ===
Typical [[vegetarian]] diets are thought to be lacking in carnosine, but whether this has a detrimental effect on vegetarians is unknown.
Carnosine is considered as a [[geroprotector]].<ref>{{Cite journal|last1=Boldyrev|first1=A. A.|last2=Stvolinsky|first2=S. L.|last3=Fedorova|first3=T. N.|last4=Suslina|first4=Z. A.|year=2010|title=Carnosine as a natural antioxidant and geroprotector: From molecular mechanisms to clinical trials|journal=Rejuvenation Research|volume=13|issue=2–3|pages=156–8|doi=10.1089/rej.2009.0923|pmid=20017611}}</ref> Carnosine can increase the [[Hayflick limit]] in human [[fibroblasts]],<ref>{{cite journal|last1=McFarland|first1=G|last2=Holliday|first2=R|year=1994|title=Retardation of the Senescence of Cultured Human Diploid Fibroblasts by Carnosine|journal=Experimental Cell Research|volume=212|issue=2|pages=167–75|doi=10.1006/excr.1994.1132|pmid=8187813}}</ref> as well as appearing to reduce the [[telomere]] shortening rate.<ref>{{cite journal|last1=Shao|first1=Lan|last2=Li|first2=Qing-Huan|last3=Tan|first3=Zheng|year=2004|title=L-Carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts|journal=Biochemical and Biophysical Research Communications|volume=324|issue=2|pages=931–6|doi=10.1016/j.bbrc.2004.09.136|pmid=15474517}}</ref> Carnosine may also slow aging through its anti-glycating properties (chronic glycolyating is speculated to accelerate aging).<ref>{{cite journal|last1=Hipkiss|first1=A. R.|year=2006|title=Does Chronic Glycolysis Accelerate Aging? Could This Explain How Dietary Restriction Works?|journal=Annals of the New York Academy of Sciences|volume=1067|issue=1|pages=361–8|bibcode=2006NYASA1067..361H|doi=10.1196/annals.1354.051|pmid=16804012|s2cid=41175541}}</ref>

=== Other ===
Carnosine can [[chelate]] [[valency (chemistry)|divalent]] metal ions.<ref name="pmid15872311" /><ref>{{Cite journal |last1=Abate |first1=Chiara |last2=Cassone |first2=Giuseppe |last3=Cordaro |first3=Massimiliano |last4=Giuffrè |first4=Ottavia |last5=Mollica-Nardo |first5=Viviana |last6=Ponterio |first6=Rosina Celeste |last7=Saija |first7=Franz |last8=Sponer |first8=Jiri |last9=Trusso |first9=Sebastiano |last10=Foti |first10=Claudia |date=2021 |title=Understanding the behaviour of carnosine in aqueous solution: an experimental and quantum-based computational investigation on acid–base properties and complexation mechanisms with Ca 2+ and Mg 2+ |url=http://xlink.rsc.org/?DOI=D1NJ04094D |journal=New Journal of Chemistry |language=en |volume=45 |issue=43 |pages=20352–20364 |doi=10.1039/D1NJ04094D |issn=1144-0546|url-access=subscription }}</ref> It has been suggested that binding Ca<sup>2+</sup> may displace protons, thereby providing a link between Ca<sup>2+</sup> and H<sup>+</sup> buffering. <ref>{{Cite journal |last1=Swietach |first1=Pawel |last2=Youm |first2=Jae-Boum |last3=Saegusa |first3=Noriko |last4=Leem |first4=Chae-Hun |last5=Spitzer |first5=Kenneth W. |last6=Vaughan-Jones |first6=Richard D. |date=2013-05-28 |title=Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling |journal=Proceedings of the National Academy of Sciences of the United States of America |volume=110 |issue=22 |pages=E2064–2073 |doi=10.1073/pnas.1222433110 |issn=1091-6490 |pmc=3670334 |pmid=23676270 |doi-access=free }}</ref> However, there is still controversy as to how much Ca<sup>2+</sup> is bound to carnosine under physiological conditions. <ref>{{Cite journal |last1=Eisner |first1=David |last2=Neher |first2=Erwin |last3=Taschenberger |first3=Holger |last4=Smith |first4=Godfrey |date=2023-06-16 |title=Physiology of intracellular calcium buffering |journal=Physiological Reviews |volume=103 |issue=4 |pages=2767–2845 |doi=10.1152/physrev.00042.2022 |issn=1522-1210 |pmid=37326298|doi-access=free }}</ref>

Research has demonstrated a positive association between muscle tissue carnosine concentration and exercise performance.<ref name=":0">{{Cite journal|last1=Culbertson|first1=Julie Y.|last2=Kreider|first2=Richard B.|last3=Greenwood|first3=Mike|last4=Cooke|first4=Matthew|date=2010-01-25|title=Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance:A Review of the Current Literature|journal=Nutrients|volume=2|issue=1|pages=75–98|doi=10.3390/nu2010075|issn=2072-6643|pmc=3257613|pmid=22253993|doi-access=free}}</ref><ref>{{Cite journal|last1=Baguet|first1=Audrey|last2=Bourgois|first2=Jan|last3=Vanhee|first3=Lander|last4=Achten|first4=Eric|last5=Derave|first5=Wim|date=2010-07-29|title=Important role of muscle carnosine in rowing performance|url=https://journals.physiology.org/doi/full/10.1152/japplphysiol.00141.2010|journal=Journal of Applied Physiology|volume=109|issue=4|pages=1096–1101|doi=10.1152/japplphysiol.00141.2010|pmid=20671038|s2cid=199729 |issn=8750-7587|url-access=subscription}}</ref><ref>{{Cite journal|last1=Varanoske|first1=Alyssa N.|last2=Hoffman|first2=Jay R.|last3=Church|first3=David D.|last4=Wang|first4=Ran|last5=Baker|first5=Kayla M.|last6=Dodd|first6=Sarah J.|last7=Coker|first7=Nicholas A.|last8=Oliveira|first8=Leonardo P.|last9=Dawson|first9=Virgil L.|last10=Fukuda|first10=David H.|last11=Stout|first11=Jeffrey R.|date=2017-09-07|title=Influence of Skeletal Muscle Carnosine Content on Fatigue during Repeated Resistance Exercise in Recreationally Active Women|journal=Nutrients|volume=9|issue=9|page=988|doi=10.3390/nu9090988|issn=2072-6643|pmc=5622748|pmid=28880219|doi-access=free}}</ref> β-Alanine supplementation is thought to increase exercise performance by promoting carnosine production in muscle. Exercise has conversely been found to increase muscle carnosine concentrations, and muscle carnosine content is higher in athletes engaging in anaerobic exercise.<ref name=":0" />


==See also==
==See also==
* [[Acetylcarnosine]], a similar molecule used to treat lens cataracts
* [[Carnosinemia]]
* [[Anserine]]
* [[Anserine]], another dipeptide antioxidant (found in birds)
* [[Carnosine synthase]], an enzyme that helps carnosine production
* [[Homocarnosine]]
* [[Carnosinemia]], a disease of excess carnosine due to an enzyme defect/deficiency
* [[Acetyl-carnosine]]


==References==
==References==
Line 75: Line 103:
{{Neuropeptides}}
{{Neuropeptides}}


[[Category:Biomolecules]]
[[Category:Dipeptides]]
[[Category:Dipeptides]]
[[Category:Anti-aging substances]]

[[Category:Dietary supplements]]
[[de:Carnosin]]
[[es:Carnosina]]
[[fr:Carnosine]]
[[ja:カルノシン]]
[[pl:Karnozyna]]
[[ru:Карнозин]]
[[fi:Karnosiini]]