Niobium pentoxide: Difference between revisions

Page 1
Page 2
Content deleted Content added
No edit summary
Open access status updates in citations with OAbot #oabot
 
(53 intermediate revisions by 37 users not shown)
Line 1: Line 1:
{{chembox
{{chembox
| Verifiedfields = changed
| verifiedrevid = 309945041
| Watchedfields = changed
| verifiedrevid = 412318175
| ImageFile = Kristallstruktur Niob(V)-oxid.png
| ImageFile = Kristallstruktur Niob(V)-oxid.png
| ImageSize = 250px
| ImageSize = 200px
| IUPACName = Niobium(V) oxide
| IUPACName = Niobium(V) oxide
| OtherNames = Niobium pentoxide
| OtherNames = Niobium pentoxide
| Section1 = {{Chembox Identifiers
| Section1 = {{Chembox Identifiers
| CASNo_Ref = {{cascite}}
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo = 1313-96-8
| CASNo = 1313-96-8
| UNII_Ref = {{fdacite|correct|FDA}}
| PubChem =
| SMILES =
| UNII = K9343U17IN
| PubChem = 123105
| SMILES = O=[Nb](=O)O[Nb](=O)=O
}}
}}
| Section2 = {{Chembox Properties
| Section2 = {{Chembox Properties
| Formula = Nb<sub>2</sub>O<sub>5</sub>
| Formula = Nb<sub>2</sub>O<sub>5</sub>
| MolarMass = 265.81 g/mol
| MolarMass = 265.81 g/mol
| Appearance = white [[orthogonal]] solid
| Appearance = white [[orthogonal]] solid
| Density = 4.60 g/cm<sup>3<sup>
| Density = 4.60 g/cm<sup>3</sup>
| MeltingPt = 1512 °C
| MeltingPtC = 1512
| BoilingPt =
| BoilingPt =
| MagSus = -10·10<sup>−6</sup> cm<sup>3</sup>/mol <ref>{{Cite web |url=https://hbcp.chemnetbase.com/faces/contents/ContentsSearch.xhtml |title=Handbook of Chemistry and Physics 102nd Edition |publisher=[[CRC Press]]}}</ref>
| Solubility = insoluble
| Solubility = insoluble
| SolubleOther = soluble in [[hydrofluoric acid|HF]]
| SolubleOther = soluble in [[hydrofluoric acid|HF]]
}}
}}
}}
}}


'''Niobium pentoxide''' is the [[inorganic compound]] with the [[chemical formula|formula]] [[Niobium|Nb]]<sub>2</sub>[[oxide|O]]<sub>5</sub>. It is a colourless insoluble solid that is fairly unreactive. It is the main precursor to all materials made of niobium, the dominant application being alloys, but other specialized applications include capacitors, [[lithium niobate]], and optical glasses.<ref name = "Cardarelli">Francois Cardarelli (2008) ''Materials Handbook'' Springer London ISBN 978-1-84628-668-1</ref>
'''Niobium pentoxide''' is the [[inorganic compound]] with the [[chemical formula|formula]] [[Niobium|Nb]]<sub>2</sub>[[oxide|O]]<sub>5</sub>. A colorless, insoluble, and fairly unreactive solid, it is the most widespread precursor for other compounds and materials containing niobium. It is predominantly used in alloying, with other specialized applications in [[capacitor]]s, optical glasses, and the production of [[lithium niobate]].<ref name = "Cardarelli">Francois Cardarelli (2008) ''Materials Handbook'' Springer London {{ISBN|978-1-84628-668-1}}</ref>


==Structure==
==Structure==
It has many polymorphic forms all based largely on octahedrally coordinated niobium atoms.<ref name = "Wells"> Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications ISBN 0-19-855370-6 </ref> The polymorphs are identified with a variety of prefixes.<ref name = "Wells"/> The form most commonly encountered is monoclinic H-[[Niobium|Nb]]<sub>2</sub>[[oxide|O]]<sub>5</sub> which has a complex structure, with a unit cell containing 28 niobium atoms and 70 oxygen, where 27 of the niobium atoms are octahedrally coordinated and one tetrahedrally.<ref>The crystal structure of the high temperature form of niobium pentoxide B. M. Gatehouse and A. D. Wadsley Acta Cryst. (1964). 17, 1545-1554 {{doi|10.1107/S0365110X6400384X}}</ref> There is an uncharacterised solid hydrate, Nb<sub>2</sub>O<sub>5</sub>.''n''H<sub>2</sub>O, the so-called '''niobic acid''' (previously called '''columbic acid'''), which can be prepared by hydrolysis of a basic solution of niobium pentachloride or Nb<sub>2</sub>O<sub>5</sub> dissolved in HF.<ref name = "Bayot">D.A. Bayot and M.M. Devillers, ''Precursors routes for the preparation of Nb based multimetallic oxides'' in Progress in Solid State Chemistry Research, Arte M. Newman, Ronald W. Buckley, (2007),Nova Publishers, ISBN 1600213138</ref>
It has many polymorphic forms all based largely on octahedrally coordinated niobium atoms.<ref name = "Nico">{{cite journal | author = C. Nico| title = Sintered NbO powders for electronic device applications | journal = The Journal of Physical Chemistry C | year = 2011 | volume = 115 | issue = 11 | pages = 4879–4886 | doi = 10.1021/jp110672u |display-authors=etal}}</ref><ref name = "Wells">Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications {{ISBN|0-19-855370-6}}</ref> The polymorphs are identified with a variety of prefixes.<ref name = "Nico"/><ref name = "Wells"/> The form most commonly encountered is [[Monoclinic crystal system|monoclinic]] H-[[Niobium|Nb]]<sub>2</sub>[[oxide|O]]<sub>5</sub>, which has a complex structure with a unit cell containing 28 niobium atoms and 70 oxygen, where 27 of the niobium atoms are octahedrally coordinated and one tetrahedrally.<ref>{{cite journal | last1=Gatehouse | first1=B. M. | last2=Wadsley | first2=A. D. | title=The crystal structure of the high temperature form of niobium pentoxide | journal=Acta Crystallographica | publisher=International Union of Crystallography (IUCr) | volume=17 | issue=12 | date=1964-12-01 | issn=0365-110X | doi=10.1107/s0365110x6400384x | pages=1545–1554}}</ref> There is an uncharacterised solid hydrate, {{chem2|Nb2O5*''n''H2O}}, the so-called '''niobic acid''' (previously called '''columbic acid'''), which can be prepared by hydrolysis of a basic solution of niobium pentachloride or Nb<sub>2</sub>O<sub>5</sub> dissolved in HF.<ref name = "Bayot">D.A. Bayot and M.M. Devillers, ''Precursors routes for the preparation of Nb based multimetallic oxides'' in Progress in Solid State Chemistry Research, Arte M. Newman, Ronald W. Buckley, (2007),Nova Publishers, {{ISBN|1-60021-313-8}}</ref>


Molten niobium pentoxide has lower mean coordination numbers than the crystalline forms, with a structure comprising mostly NbO<sub>5</sub> and NbO<sub>6</sub> polyhedra.<ref>{{cite journal |last1=Alderman, O. L. G. Benmore, C. J. Neuefeind, J. C. Coillet, E Mermet, Alain Martinez, V. Tamalonis, A. Weber, J. K. R. |title=Amorphous tantala and its relationship with the molten state |journal=Physical Review Materials |date=2018 |volume=2 |issue=4 |page=043602 |doi=10.1103/PhysRevMaterials.2.043602 |bibcode=2018PhRvM...2d3602A |doi-access=free |url=https://www.osti.gov/biblio/1436942 }}</ref>
==Production==
Nb<sub>2</sub>O<sub>5</sub> is prepared by hydrolysis of alkali-metal niobates and alkoxides and the fluorides using base. Such ostensibly simple procedures afford hydrated oxides that are calcined.


===Other routes===
==Production==
===Hydrolysis===
Given that Nb<sub>2</sub>O<sub>5</sub> is the most common and robust compound of niobium, many methods, both practical and esoteric, exist for its formation. The oxide for example, arises when niobium metal is oxidised in air.<ref name = "Greenwood"/> The oxidation of niobium dioxide, NbO<sub>2</sub> in air forms the polymorph, L-Nb<sub>2</sub>O<sub>5</sub>.<ref>Electrical properties of NbO<sub>2</sub> and Nb<sub>2</sub>O<sub>5</sub> at elevated temperature in air and flowing argon, G. C. Vezzoli Phys. Rev. B 26, 3954 - 3957 (1982){{doi|10.1103/PhysRevB.26.3954}}</ref> Pure Nb<sub>2</sub>O<sub>5</sub> can be prepared by hydrolysis of [[niobium pentachloride|NbCl<sub>5</sub>]]:<ref>Process for the manufacture of niobium pentoxide or tantalum pentoxide, Kern, Therwil, Jacob, Hooper (CIBA Switzerland), US Patent number: 3133788, (1964)</ref>
Nb<sub>2</sub>O<sub>5</sub> is prepared by hydrolysis of alkali-metal niobates, alkoxides or fluoride using base. Such ostensibly simple procedures afford hydrated oxides that can then be [[Calcination|calcined]]. Pure Nb<sub>2</sub>O<sub>5</sub> can also be prepared by hydrolysis of [[Niobium(V) chloride|NbCl<sub>5</sub>]]:<ref>Process for the manufacture of niobium pentoxide or tantalum pentoxide, Kern, Therwil, Jacob, Hooper (CIBA Switzerland), US Patent number: 3133788, (1964)</ref>
:2 NbCl<sub>5</sub> + 5 H<sub>2</sub>O → Nb<sub>2</sub>O<sub>5</sub> + 10 HCl
:2 NbCl<sub>5</sub> + 5 H<sub>2</sub>O → Nb<sub>2</sub>O<sub>5</sub> + 10 HCl
A method of production via [[sol-gel]] techniques has been reported hydrolysing niobium alkoxides in the presence of acetic acid, followed by calcination of the gels to produce the polymorphic form, T-Nb<sub>2</sub>O<sub>5</sub>.<ref>Sol-gel route to niobium pentoxide, P Griesmar, G Papin, C Sanchez, J Livage - Chem. Mater.; 1991; 3(2); 335-339 {{doi|10.1021/cm00014a026}}</ref>
A method of production via [[sol-gel]] techniques has been reported hydrolysing niobium alkoxides in the presence of acetic acid, followed by calcination of the gels to produce the [[Orthorhombic crystal system|orthorhombic]] form,<ref name = "Nico"/> T-Nb<sub>2</sub>O<sub>5</sub>.<ref>{{cite journal | last1=Griesmar | first1=P. | last2=Papin | first2=G. | last3=Sanchez | first3=C. | last4=Livage | first4=J. | title=Sol-gel route to niobium pentoxide | journal=Chemistry of Materials | publisher=American Chemical Society (ACS) | volume=3 | issue=2 | year=1991 | issn=0897-4756 | doi=10.1021/cm00014a026 | pages=335–339}}</ref>


===Oxidation===
Nano-sized niobium pentoxide particles have been synthesised by LiH reduction of NbCl<sub>5</sub>, followed by aerial oxidation as part of a synthesis of nano structured niobates.
Given that Nb<sub>2</sub>O<sub>5</sub> is the most common and robust compound of niobium, many methods, both practical and esoteric, exist for its formation. The oxide for example, arises when niobium metal is oxidised in air.<ref name = "Greenwood"/> The oxidation of [[niobium dioxide]], NbO<sub>2</sub> in air forms the polymorph, L-Nb<sub>2</sub>O<sub>5</sub>.<ref>{{cite journal | last=Vezzoli | first=G. C. | title=Electrical properties of NbO2andNb2O5at elevated temperature in air and flowing argon | journal=Physical Review B | publisher=American Physical Society (APS) | volume=26 | issue=7 | date=1982-10-01 | issn=0163-1829 | doi=10.1103/physrevb.26.3954 | pages=3954–3957| bibcode=1982PhRvB..26.3954V }}</ref>

Nano-sized niobium pentoxide particles have been synthesized by LiH reduction of NbCl<sub>5</sub>, followed by aerial oxidation as part of a synthesis of nano structured niobates.{{cn|date=June 2020}}


==Reactions==
==Reactions==
Nb<sub>2</sub>O<sub>5</sub> is attacked by HF and dissolves in fused alkali.<ref name = "Bayot"/><ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref>
Nb<sub>2</sub>O<sub>5</sub> is attacked by HF and dissolves in fused alkali.<ref name = "Bayot"/><ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref>


===Reduction to the metal===
===Reduction to the metal===
The conversion of Nb<sub>2</sub>O<sub>5</sub> is the main route for the industrial production of niobium metal. In the 1980s, about 15,000,000 kg of Nb<sub>2</sub>O<sub>5</sub> were consumed annually for reduction to the metal.<ref name=Ullmann>Joachim Eckert, Hermann C. Starck "Niobium and Niobium Compounds" Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. {{DOI|10.1002/14356007.a17_251}}</ref> The main method is reduction of this oxide with [[aluminium]]:
The conversion of Nb<sub>2</sub>O<sub>5</sub> is the main route for the industrial production of niobium metal. In the 1980s, about 15,000,000&nbsp;kg of Nb<sub>2</sub>O<sub>5</sub> were consumed annually for reduction to the metal.<ref name=Ullmann>{{citation | first1=Sven| last1=Albrecht|last3=Eckert | first3=Joachim |first2=Christian |last2=Cymorek| title=Ullmann's Encyclopedia of Industrial Chemistry: Niobium and Niobium Compounds | publisher=Wiley-VCH | location=Weinheim | year=2011| doi=10.1002/14356007.a17_251.pub2 | page=}}</ref> The main method is reduction of this oxide with [[aluminium]]:
:3 Nb<sub>2</sub>O<sub>5</sub> + 10 Al → 6 Nb + 5 Al<sub>2</sub>O<sub>3</sub>
:3 Nb<sub>2</sub>O<sub>5</sub> + 10 Al → 6 Nb + 5 Al<sub>2</sub>O<sub>3</sub>

An alternative but less practiced route involves carbothermal reduction, which proceeds via reduction with carbon and forms the basis of the two stage Balke process:<ref>Alan E. Comyns (1999) ''Encyclopedic Dictionary of Named Processes in Chemical Technology'' CRC Press, ISBN 0849312051</ref><ref>U.S. Environmental Protection Agency, Development Document for Effluent Limitations, Guidelines and Standards for the Nonferrous Metals Manufacturing Point Source Category, Volume VIII, Office of Water Regulations and Standards, May 1989</ref>
An alternative but less practiced route involves carbothermal reduction, which proceeds via reduction with carbon and forms the basis of the two stage Balke process:<ref>Alan E. Comyns (1999) ''Encyclopedic Dictionary of Named Processes in Chemical Technology'' CRC Press, {{ISBN|0-8493-1205-1}}</ref><ref>U.S. Environmental Protection Agency, Development Document for Effluent Limitations, Guidelines and Standards for the Nonferrous Metals Manufacturing Point Source Category, Volume VIII, Office of Water Regulations and Standards, May 1989</ref>
:Nb<sub>2</sub>O<sub>5</sub> + 7 C → 2 NbC + 5 CO (heated under vacuum at 1800°C)
:Nb<sub>2</sub>O<sub>5</sub> + 7 C → 2 NbC + 5 CO (heated under vacuum at 1800&nbsp;°C)
:5 NbC + Nb<sub>2</sub>O<sub>5</sub> → 7 Nb + 5 CO
:5 NbC + Nb<sub>2</sub>O<sub>5</sub> → 7 Nb + 5 CO


===Conversion to halides===
===Conversion to halides===
Many methods are known for conversion of Nb<sub>2</sub>O<sub>5</sub> to the halides. The main problem is incomplete reaction to give the oxyhalides. In the laboratory, the conversion can be effected with thionyl chloride:<ref>D. Brown "Niobium(V) Chloride and Hexachloroniobates(V)" Inorganic Syntheses, 1957 Volume 9, pp. 88–92.{{DOI|10.1002/9780470132401.ch24}}</ref>
Many methods are known for conversion of Nb<sub>2</sub>O<sub>5</sub> to the halides. The main problem is incomplete reaction to give the oxyhalides. In the laboratory, the conversion can be effected with thionyl chloride:<ref>{{cite book | last1=Brown | first1=D. | title=Inorganic Syntheses | series=Inorganic Syntheses | chapter=Niobium(V) Chloride and Hexachloroniobates(V) |year=1967| doi=10.1002/9780470132401.ch24 |volume=9| pages=88–92| isbn=9780470132401 }}</ref>
:Nb<sub>2</sub>O<sub>5</sub> + 5 SOCl<sub>2</sub> → 2 NbCl<sub>5</sub> + 5 SO<sub>2</sub>
:Nb<sub>2</sub>O<sub>5</sub> + 5 SOCl<sub>2</sub> → 2 NbCl<sub>5</sub> + 5 SO<sub>2</sub>
Nb<sub>2</sub>O<sub>5</sub> reacts with [[carbon tetrachloride|CCl<sub>4</sub>]] to give [[niobium oxychloride]] NbOCl<sub>3</sub>.
Nb<sub>2</sub>O<sub>5</sub> reacts with [[carbon tetrachloride|CCl<sub>4</sub>]] to give [[niobium oxychloride]] NbOCl<sub>3</sub>.


===Conversion to niobates===
===Conversion to niobates===
Treating Nb<sub>2</sub>O<sub>5</sub> with aqueous [[sodium hydroxide|NaOH]] at 200 °C can give crystalline sodium niobate, NaNbO<sub>3</sub> whereas the reaction with [[potassium hydroxide|KOH]] may yield soluble Lindqvist-type hexaniobates, {{chem|Nb|6|O|19|8-}}.<ref>Studies on the hydrothermal synthesis of niobium oxides, I.C. M. S. Santos, L. H. Loureiro, M. F. P. Silva and Ana M. V. Cavaleiro, Polyhedron, 21, 20, (2002), 2009-2015, {{doi|10.1016/S0277-5387(02)01136-1}}</ref> [[Lithium niobate]]s such as LiNbO<sub>3</sub> and Li3NbO<sub>4</sub> can be prepared by reaction [[lithium carbonate]] and Nb<sub>2</sub>O<sub>5</sub>.<ref>US Patent 5482001 - Process for producing lithium niobate single crystal,1996, Katoono T., Tominaga H.,</ref><ref name=Li3NbO4/>
Treating Nb<sub>2</sub>O<sub>5</sub> with aqueous [[sodium hydroxide|NaOH]] at 200&nbsp;°C can give crystalline sodium niobate, NaNbO<sub>3</sub> whereas the reaction with [[potassium hydroxide|KOH]] may yield soluble Lindqvist-type hexaniobates, {{chem|Nb|6|O|19|8-}}.<ref>{{cite journal | last1=Santos | first1=I.C.M.S. | last2=Loureiro | first2=L.H. | last3=Silva | first3=M.F.P. | last4=Cavaleiro | first4=Ana M.V. | title=Studies on the hydrothermal synthesis of niobium oxides | journal=Polyhedron | publisher=Elsevier BV | volume=21 | issue=20 | year=2002 | issn=0277-5387 | doi=10.1016/s0277-5387(02)01136-1 | pages=2009–2015}}</ref> [[Lithium niobate]]s such as LiNbO<sub>3</sub> and Li<sub>3</sub>NbO<sub>4</sub> can be prepared by reaction [[lithium carbonate]] and Nb<sub>2</sub>O<sub>5</sub>.<ref>US Patent 5482001 - Process for producing lithium niobate single crystal,1996, Katoono T., Tominaga H.,</ref><ref name=Li3NbO4/>


===Conversion to reduced niobium oxides===
===Conversion to reduced niobium oxides===
High temperature reduction with H<sub>2</sub> gives NbO<sub>2</sub>:<ref name = "Greenwood"/>
High temperature reduction with H<sub>2</sub> gives NbO<sub>2</sub>:<ref name = "Greenwood"/>
:Nb<sub>2</sub>O<sub>5</sub> + H<sub>2</sub> → 2 NbO<sub>2</sub> + H<sub>2</sub>O
:Nb<sub>2</sub>O<sub>5</sub> + H<sub>2</sub> → 2 NbO<sub>2</sub> + H<sub>2</sub>O


Niobium monooxide arises from a comproportionation using an arc-furnace:<ref>T. B. Reed, E. R. Pollard "Niobium Monoxide" Inorganic Syntheses, 1995 Volume 30, pp. 108–110, 2007. {{DOI|10.1002/9780470132616.ch22}}</ref>
Niobium monoxide arises from a [[comproportionation]] using an arc-furnace:<ref>{{cite book | last1=Reed | first1=T. B. | last2=Pollard | first2=E. R. | last3=Lonney | first3=L. E. | last4=Loehman | first4=R. E. | last5=Honig | first5=J. M. | title=Inorganic Syntheses | chapter=Niobium Monoxide | publisher=John Wiley & Sons, Inc. | publication-place=Hoboken, NJ, USA | date=2007-01-05 | issn=1934-4716 | doi=10.1002/9780470132616.ch22 | volume=30|pages=108–110| isbn=9780470132616 }}</ref>
:Nb<sub>2</sub>O<sub>5</sub> + 3Nb → 5 NbO
:Nb<sub>2</sub>O<sub>5</sub> + 3Nb → 5 NbO


The burgundy-coloured niobium(III) oxide, one of the first superconducting oxides, can be prepared again by an comproportionation:<ref name=Li3NbO4>Margret J. Geselbracht, Angelica M. Stacy, "Lithium Niobium Oxide: LiNbo2 and Superconducting Li<sub>X</sub>NbO<sub>2</sub>" Inorganic Syntheses 1995, Volume 30, Pages: 222–226.{{DOI|10.1002/9780470132616.ch42}}</ref>
The burgundy-coloured niobium(III) oxide, one of the first superconducting oxides, can be prepared again by an comproportionation:<ref name=Li3NbO4>{{cite book | last1=Geselbracht | first1=Margret J. | last2=Stacy | first2=Angelica M. | last3=Rosseinsky | first3=Matthew | title=Inorganic Syntheses | chapter=Lithium Niobium Oxide: LiNbO<sub>2</sub> and Superconducting Li<sub>x</sub>NbO<sub>2</sub> | publisher=John Wiley & Sons, Inc. | publication-place=Hoboken, NJ, USA | date=2007-01-05 | issn=1934-4716 | doi=10.1002/9780470132616.ch42 | volume=30|pages=222–226| isbn=9780470132616 }}</ref>
:Li<sub>3</sub>NbO<sub>4</sub> + 2 NbO → 3 LiNbO<sub>2</sub>
:Li<sub>3</sub>NbO<sub>4</sub> + 2 NbO → 3 LiNbO<sub>2</sub>


==Uses==
==Uses==
Niobium pentoxide is used mainly in the production of niobium metal,<ref name=Ullmann/> but specialized applications exist for [[lithium niobate]] and as a component of optical glass.<ref name = "Cardarelli"/>
Niobium pentoxide is used mainly in the production of niobium metal,<ref name=Ullmann/> but specialized applications exist in the production of optical glasses and [[lithium niobate]].<ref name = "Cardarelli"/>

Thin films of Nb<sub>2</sub>O<sub>5</sub> form the dielectric layers in [[niobium capacitor|niobium electrolytic capacitor]]s.

[[Niobium|Nb]]<sub>2</sub>[[oxide|O]]<sub>5</sub> have been considered for use as an anode in a lithium ion battery, given that their ordered crystalline structure allows charging speeds of 225 mAh g<sup>−1</sup> at 200 mA g<sup>−1</sup> across 400 cycles, at a Coulombic efficiency of 99.93%.<ref>{{Cite web |last=Lavars |first=Nick |date=2022-09-09 |title=Battery electrode transforms during use for faster charging |url=https://newatlas.com/energy/battery-electrode-transforms-faster-charging/ |access-date=2022-09-10 |website=New Atlas |language=en-US}}</ref>


==External links==
==External links==
* [http://www.webelements.com/niobium/ Basic Niobium Information and Research Data]
* [http://www.webelements.com/niobium/ Basic Niobium Information and Research Data]
*Thin films of Nb<sub>2</sub>O<sub>5</sub> form the dielectric layers in solid electrolyte capacitors and these layers can be grown electrolytically on sintered bodies containing niobium monoxide.Katsuhiro Yoshida, Noriko Kuge (NEC Corporation), Sintered bodies based on niobium suboxide US patent 6215652, 2001.


==References==
==References==
{{reflist|2}}
{{reflist|30em}}


{{Niobium compounds}}
{{Niobium compounds}}
{{Oxides}}


[[Category:Niobium compounds]]
[[Category:Niobium(V) compounds]]
[[Category:Oxides]]
[[Category:Transition metal oxides]]

[[de:Niob(V)-oxid]]
[[it:Ossido di niobio]]
[[pl:Tlenek niobu(V)]]
[[pt:Óxido de nióbio (V)]]
[[fi:Niobiumpentoksidi]]
[[zh:五氧化二铌]]