Biodiversity and drugs: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Replaced VE ref names using RefRenamer
 
Line 1: Line 1:
{{Short description|Biodiversity Is helpful}}
{{Short description|Biodiversity Is helpful}}
[[Biodiversity]] plays a vital role in maintaining human and animal health because numerous plants, animals, and fungi are used in medicine to produce vital [[vitamin]]s, [[Analgesic|painkillers]], [[antibiotic]]s, and other medications.<ref>{{Cite journal |last1=Fajinmi |first1=Olufunke O. |last2=Olarewaju |first2=Olaoluwa O. |last3=Van Staden |first3=Johannes |date=2023-03-03 |title=Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa |journal=Plants |volume=12 |issue=5 |pages=1174 |doi=10.3390/plants12051174 |issn=2223-7747|doi-access=free |pmc=10007054 }}</ref><ref name=":0" /><ref name=":1" /> Natural products have been recognized and used as medicines by ancient cultures all around the world.<ref name="Wilson" /> Some animals are also known to [[Self-medication|self-medicate]] using plants and other materials available to them.<ref name=":2">{{Cite journal |last1=Robles |first1=Mario |last2=Aregullin |first2=Manuel |last3=West |first3=Jan |last4=Rodriguez |first4=Eloy |date=June 1995 |title=Recent Studies on the Zoopharmacognosy, Pharmacology and Neurotoxicology of Sesquiterpene Lactones* |journal=Planta Medica |volume=61 |issue=3 |pages=199–203 |doi=10.1055/s-2006-958055 |issn=0032-0943|doi-access=free }}</ref>
[[Biodiversity]] plays a vital role in maintaining human and animal health because numerous plants, animals, and fungi are used in medicine to produce vital [[vitamin]]s, [[Analgesic|painkillers]], [[antibiotic]]s, and other medications.<ref>{{Cite journal |last1=Fajinmi |first1=Olufunke O. |last2=Olarewaju |first2=Olaoluwa O. |last3=Van Staden |first3=Johannes |date=2023-03-03 |title=Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa |journal=Plants |volume=12 |issue=5 |pages=1174 |doi=10.3390/plants12051174 |issn=2223-7747|doi-access=free |pmc=10007054 }}</ref><ref name="Luo-2011a" /><ref name="Xu-2022" /> Natural products have been recognized and used as medicines by ancient cultures all around the world.<ref name="Wilson" /> Some animals are also known to [[Self-medication|self-medicate]] using plants and other materials available to them.<ref name="Robles-1995">{{Cite journal |last1=Robles |first1=Mario |last2=Aregullin |first2=Manuel |last3=West |first3=Jan |last4=Rodriguez |first4=Eloy |date=June 1995 |title=Recent Studies on the Zoopharmacognosy, Pharmacology and Neurotoxicology of Sesquiterpene Lactones* |journal=Planta Medica |volume=61 |issue=3 |pages=199–203 |doi=10.1055/s-2006-958055 |issn=0032-0943|doi-access=free }}</ref>


==Plant drugs==
==Plant drugs==
Many plant species have been studied thoroughly for their value as a source of medicine.<ref>{{Cite journal |last1=Alaribe |first1=Franca Nneka |last2=Motaung |first2=Keolebogile Shirley Caroline Mamotswere |date=June 2019 |title=Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent |url=https://pubmed.ncbi.nlm.nih.gov/30838937 |journal=Tissue Engineering. Part A |volume=25 |issue=11–12 |pages=827–829 |doi=10.1089/ten.TEA.2019.0060 |issn=1937-335X |pmid=30838937}}</ref><ref name=":9">{{Cite journal |last1=Nayim |first1=Paul |last2=Mbaveng |first2=Armelle T. |last3=Wamba |first3=Brice E. N. |last4=Fankam |first4=Aimé G. |last5=Dzotam |first5=Joachim K. |last6=Kuete |first6=Victor |date=2018 |title=Antibacterial and Antibiotic-Potentiating Activities of Thirteen Cameroonian Edible Plants against Gram-Negative Resistant Phenotypes |journal=TheScientificWorldJournal |volume=2018 |pages=4020294 |doi=10.1155/2018/4020294 |issn=1537-744X |pmc=6151687 |pmid=30275799 |doi-access=free }}</ref> They have a wide range of benefits such as anti-fever and anti-inflammatory properties, can treat diseases such as [[malaria]] and [[diabetes]], and are used as vitamins and [[antibiotic]] and [[antifungal]] medications.<ref name=":9" /><ref>{{Cite journal |last1=Alaribe |first1=Franca Nneka |last2=Motaung |first2=Keolebogile Shirley Caroline Mamots |date=June 2019 |title=Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent |url=http://dx.doi.org/10.1089/ten.tea.2019.0060 |journal=Tissue Engineering Part A |volume=25 |issue=11–12 |pages=827–829 |doi=10.1089/ten.tea.2019.0060 |issn=1937-3341}}</ref><ref>{{Cite journal |last1=Zarayneh |first1=Simin |last2=Sepahi |first2=Abbas Akhavan |last3=Jonoobi |first3=Mehdi |last4=Rasouli |first4=Hassan |date=2018-10-15 |title=Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes |url=https://pubmed.ncbi.nlm.nih.gov/29966671 |journal=International Journal of Biological Macromolecules |volume=118 |issue=Pt A |pages=1045–1054 |doi=10.1016/j.ijbiomac.2018.06.160 |issn=1879-0003 |pmid=29966671}}</ref><ref>{{Cite journal |last=Benedik |first=Evgen |date=March 2022 |title=Sources of vitamin D for humans |url=https://pubmed.ncbi.nlm.nih.gov/34658250 |journal=International Journal for Vitamin and Nutrition Research |volume=92 |issue=2 |pages=118–125 |doi=10.1024/0300-9831/a000733 |issn=0300-9831 |pmid=34658250}}</ref> More than 60% of the world's population relies almost entirely on plant medicine for primary health care,<ref name="Gaston and Spicer">Kevin J. Gaston & John I. Spicer. 2004. Biodiversity: an introduction, Blackwell Publishing. 2nd Ed. {{ISBN|1-4051-1857-1}}(pbk.)</ref> and about 119 pure chemicals such as [[caffeine]], [[methyl salicylate]], and [[quinine]] are extracted from less than 90 species of higher plants and used as medicines throughout the world.<ref name="Wilson">N.R. Farnsworth. ''Screening Plants for New Medicine''. IN: E.O Wilson, editor. 1988. Biodiversity, Natrional Academy. {{ISBN|0-309-03783-2}}(pbk.)</ref>
Many plant species have been studied thoroughly for their value as a source of medicine.<ref>{{Cite journal |last1=Alaribe |first1=Franca Nneka |last2=Motaung |first2=Keolebogile Shirley Caroline Mamotswere |date=June 2019 |title=Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent |url=https://pubmed.ncbi.nlm.nih.gov/30838937 |journal=Tissue Engineering. Part A |volume=25 |issue=11–12 |pages=827–829 |doi=10.1089/ten.TEA.2019.0060 |issn=1937-335X |pmid=30838937}}</ref><ref name="Nayim-2018">{{Cite journal |last1=Nayim |first1=Paul |last2=Mbaveng |first2=Armelle T. |last3=Wamba |first3=Brice E. N. |last4=Fankam |first4=Aimé G. |last5=Dzotam |first5=Joachim K. |last6=Kuete |first6=Victor |date=2018 |title=Antibacterial and Antibiotic-Potentiating Activities of Thirteen Cameroonian Edible Plants against Gram-Negative Resistant Phenotypes |journal=TheScientificWorldJournal |volume=2018 |pages=4020294 |doi=10.1155/2018/4020294 |issn=1537-744X |pmc=6151687 |pmid=30275799 |doi-access=free }}</ref> They have a wide range of benefits such as anti-fever and anti-inflammatory properties, can treat diseases such as [[malaria]] and [[diabetes]], and are used as vitamins and [[antibiotic]] and [[antifungal]] medications.<ref name="Nayim-2018" /><ref>{{Cite journal |last1=Alaribe |first1=Franca Nneka |last2=Motaung |first2=Keolebogile Shirley Caroline Mamots |date=June 2019 |title=Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent |url=http://dx.doi.org/10.1089/ten.tea.2019.0060 |journal=Tissue Engineering Part A |volume=25 |issue=11–12 |pages=827–829 |doi=10.1089/ten.tea.2019.0060 |issn=1937-3341}}</ref><ref>{{Cite journal |last1=Zarayneh |first1=Simin |last2=Sepahi |first2=Abbas Akhavan |last3=Jonoobi |first3=Mehdi |last4=Rasouli |first4=Hassan |date=2018-10-15 |title=Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes |url=https://pubmed.ncbi.nlm.nih.gov/29966671 |journal=International Journal of Biological Macromolecules |volume=118 |issue=Pt A |pages=1045–1054 |doi=10.1016/j.ijbiomac.2018.06.160 |issn=1879-0003 |pmid=29966671}}</ref><ref>{{Cite journal |last=Benedik |first=Evgen |date=March 2022 |title=Sources of vitamin D for humans |url=https://pubmed.ncbi.nlm.nih.gov/34658250 |journal=International Journal for Vitamin and Nutrition Research |volume=92 |issue=2 |pages=118–125 |doi=10.1024/0300-9831/a000733 |issn=0300-9831 |pmid=34658250}}</ref> More than 60% of the world's population relies almost entirely on plant medicine for primary health care,<ref name="Gaston and Spicer">Kevin J. Gaston & John I. Spicer. 2004. Biodiversity: an introduction, Blackwell Publishing. 2nd Ed. {{ISBN|1-4051-1857-1}}(pbk.)</ref> and about 119 pure chemicals such as [[caffeine]], [[methyl salicylate]], and [[quinine]] are extracted from less than 90 species of higher plants and used as medicines throughout the world.<ref name="Wilson">N.R. Farnsworth. ''Screening Plants for New Medicine''. IN: E.O Wilson, editor. 1988. Biodiversity, Natrional Academy. {{ISBN|0-309-03783-2}}(pbk.)</ref>


In China, Japan, India, and Germany, there is a great deal of interest in and support for the search for new drugs from higher plants.<ref name="Wilson"/>
In China, Japan, India, and Germany, there is a great deal of interest in and support for the search for new drugs from higher plants.<ref name="Wilson"/>
Line 9: Line 9:
===Sweet Wormwood===
===Sweet Wormwood===
[[File:Sweet wormwood (lat. Artemisia annua).jpg|thumb|Sweet wormwood (''Artemisia annua'')]]
[[File:Sweet wormwood (lat. Artemisia annua).jpg|thumb|Sweet wormwood (''Artemisia annua'')]]
Sweet Wormwood (''[[Artemisia annua]]'') grows in all continents besides Antarctica.<ref>{{Cite journal |last1=Septembre-Malaterre |first1=Axelle |last2=Lalarizo Rakoto |first2=Mahary |last3=Marodon |first3=Claude |last4=Bedoui |first4=Yosra |last5=Nakab |first5=Jessica |last6=Simon |first6=Elisabeth |last7=Hoarau |first7=Ludovic |last8=Savriama |first8=Stephane |last9=Strasberg |first9=Dominique |last10=Guiraud |first10=Pascale |last11=Selambarom |first11=Jimmy |last12=Gasque |first12=Philippe |date=2020-07-15 |title=Artemisia annua, a Traditional Plant Brought to Light |journal=International Journal of Molecular Sciences |volume=21 |issue=14 |pages=4986 |doi=10.3390/ijms21144986 |issn=1422-0067|doi-access=free |pmc=7404215 }}</ref> It is the only known source of [[artemisinin]], a drug that has been used to treat [[fever]]s due to [[malaria]], exhaustion, or many other causes, since ancient times.<ref name=":8">{{Cite journal |last1=Feng |first1=Xinchi |last2=Cao |first2=Shijie |last3=Qiu |first3=Feng |last4=Zhang |first4=Boli |date=2020 |title=Traditional application and modern pharmacological research of Artemisia annua L |url=https://pubmed.ncbi.nlm.nih.gov/32758647 |journal=Pharmacology & Therapeutics |volume=216 |pages=107650 |doi=10.1016/j.pharmthera.2020.107650 |issn=1879-016X |pmid=32758647}}</ref> Upon further study, scientists have found that Sweet Wormwood inhibits activity of various bacteria, viruses, and parasites and exhibits anti-cancer and anti-inflammatory properties.<ref name=":8" /><ref>{{Cite journal |last1=Wojtkowiak-Giera |first1=Agnieszka |last2=Derda |first2=Monika |last3=Kosik-Bogacka |first3=Danuta |last4=Kolasa-Wołosiuk |first4=Agnieszka |last5=Wandurska-Nowak |first5=Elżbieta |last6=Jagodziński |first6=Paweł P. |last7=Hadaś |first7=Edward |date=2019 |title=The modulatory effect of Artemisia annua L. on toll-like receptor expression in Acanthamoeba infected mouse lungs |url=http://dx.doi.org/10.1016/j.exppara.2019.02.011 |journal=Experimental Parasitology |volume=199 |pages=24–29 |doi=10.1016/j.exppara.2019.02.011 |issn=0014-4894}}</ref><ref>{{Cite journal |last=Efferth |first=Thomas |date=2018 |title=Beyond malaria: The inhibition of viruses by artemisinin-type compounds |url=http://dx.doi.org/10.1016/j.biotechadv.2018.01.001 |journal=Biotechnology Advances |volume=36 |issue=6 |pages=1730–1737 |doi=10.1016/j.biotechadv.2018.01.001 |issn=0734-9750}}</ref>
Sweet Wormwood (''[[Artemisia annua]]'') grows in all continents besides Antarctica.<ref>{{Cite journal |last1=Septembre-Malaterre |first1=Axelle |last2=Lalarizo Rakoto |first2=Mahary |last3=Marodon |first3=Claude |last4=Bedoui |first4=Yosra |last5=Nakab |first5=Jessica |last6=Simon |first6=Elisabeth |last7=Hoarau |first7=Ludovic |last8=Savriama |first8=Stephane |last9=Strasberg |first9=Dominique |last10=Guiraud |first10=Pascale |last11=Selambarom |first11=Jimmy |last12=Gasque |first12=Philippe |date=2020-07-15 |title=Artemisia annua, a Traditional Plant Brought to Light |journal=International Journal of Molecular Sciences |volume=21 |issue=14 |pages=4986 |doi=10.3390/ijms21144986 |issn=1422-0067|doi-access=free |pmc=7404215 }}</ref> It is the only known source of [[artemisinin]], a drug that has been used to treat [[fever]]s due to [[malaria]], exhaustion, or many other causes, since ancient times.<ref name="Feng-2020">{{Cite journal |last1=Feng |first1=Xinchi |last2=Cao |first2=Shijie |last3=Qiu |first3=Feng |last4=Zhang |first4=Boli |date=2020 |title=Traditional application and modern pharmacological research of Artemisia annua L |url=https://pubmed.ncbi.nlm.nih.gov/32758647 |journal=Pharmacology & Therapeutics |volume=216 |pages=107650 |doi=10.1016/j.pharmthera.2020.107650 |issn=1879-016X |pmid=32758647}}</ref> Upon further study, scientists have found that Sweet Wormwood inhibits activity of various bacteria, viruses, and parasites and exhibits anti-cancer and anti-inflammatory properties.<ref name="Feng-2020" /><ref>{{Cite journal |last1=Wojtkowiak-Giera |first1=Agnieszka |last2=Derda |first2=Monika |last3=Kosik-Bogacka |first3=Danuta |last4=Kolasa-Wołosiuk |first4=Agnieszka |last5=Wandurska-Nowak |first5=Elżbieta |last6=Jagodziński |first6=Paweł P. |last7=Hadaś |first7=Edward |date=2019 |title=The modulatory effect of Artemisia annua L. on toll-like receptor expression in Acanthamoeba infected mouse lungs |url=http://dx.doi.org/10.1016/j.exppara.2019.02.011 |journal=Experimental Parasitology |volume=199 |pages=24–29 |doi=10.1016/j.exppara.2019.02.011 |issn=0014-4894}}</ref><ref>{{Cite journal |last=Efferth |first=Thomas |date=2018 |title=Beyond malaria: The inhibition of viruses by artemisinin-type compounds |url=http://dx.doi.org/10.1016/j.biotechadv.2018.01.001 |journal=Biotechnology Advances |volume=36 |issue=6 |pages=1730–1737 |doi=10.1016/j.biotechadv.2018.01.001 |issn=0734-9750}}</ref>


== Animal-derived drugs ==
== Animal-derived drugs ==
Animal-derived drugs are a major source of modern medications used around the world.<ref name=":0">{{Cite journal |last1=Luo |first1=Jiaoyang |last2=Yan |first2=Dan |last3=Zhang |first3=Da |last4=Han |first4=Yumei |last5=Dong |first5=Xiaoping |last6=Yang |first6=Yong |last7=Deng |first7=Kejun |last8=Xiao |first8=Xiaohe |date=2011-09-09 |title=Application of 12S rRNA Barcodes for the Identification of Animal-Derived Drugs |journal=Journal of Pharmacy & Pharmaceutical Sciences |volume=14 |issue=3 |pages=358 |doi=10.18433/j3n017 |issn=1482-1826|doi-access=free }}</ref><ref>{{Cite journal |last=Wragge-Morley |first=Alexander |date=December 2022 |title=Medicine, connoisseurship, and the animal body |url=https://pubmed.ncbi.nlm.nih.gov/32847416 |journal=History of Science |volume=60 |issue=4 |pages=481–499 |doi=10.1177/0073275320949001 |issn=1753-8564 |pmid=32847416}}</ref> The use of these drugs can cause certain animals to become [[Endangered species|endangered]] or [[Threatened species|threatened]]; however, it is difficult to identify the animal species used in medicine since animal-derived drugs are often processed, which degrades their [[DNA]].<ref name=":0" />
Animal-derived drugs are a major source of modern medications used around the world.<ref name="Luo-2011a">{{Cite journal |last1=Luo |first1=Jiaoyang |last2=Yan |first2=Dan |last3=Zhang |first3=Da |last4=Han |first4=Yumei |last5=Dong |first5=Xiaoping |last6=Yang |first6=Yong |last7=Deng |first7=Kejun |last8=Xiao |first8=Xiaohe |date=2011-09-09 |title=Application of 12S rRNA Barcodes for the Identification of Animal-Derived Drugs |journal=Journal of Pharmacy & Pharmaceutical Sciences |volume=14 |issue=3 |pages=358 |doi=10.18433/j3n017 |issn=1482-1826|doi-access=free }}</ref><ref>{{Cite journal |last=Wragge-Morley |first=Alexander |date=December 2022 |title=Medicine, connoisseurship, and the animal body |url=https://pubmed.ncbi.nlm.nih.gov/32847416 |journal=History of Science |volume=60 |issue=4 |pages=481–499 |doi=10.1177/0073275320949001 |issn=1753-8564 |pmid=32847416}}</ref> The use of these drugs can cause certain animals to become [[Endangered species|endangered]] or [[Threatened species|threatened]]; however, it is difficult to identify the animal species used in medicine since animal-derived drugs are often processed, which degrades their [[DNA]].<ref name="Luo-2011a" />


=== Medicinal Animal Horns and Shells ===
=== Medicinal Animal Horns and Shells ===
Cells from animal horns and shells are included in a group of medications call Medicinal Animal Horns and Shells (MAHS).<ref name=":0" /><ref name=":6">{{Cite journal |last1=Luo |first1=Jiaoyang |last2=Yan |first2=Dan |last3=Zhang |first3=Da |last4=Feng |first4=Xue |last5=Yan |first5=Yan |last6=Dong |first6=Xiaoping |last7=Xiao |first7=Xiaohe |date=2011-06-14 |title=Substitutes for endangered medicinal animal horns and shells exposed by antithrombotic and anticoagulation effects |url=https://pubmed.ncbi.nlm.nih.gov/21549826 |journal=Journal of Ethnopharmacology |volume=136 |issue=1 |pages=210–216 |doi=10.1016/j.jep.2011.04.053 |issn=1872-7573 |pmid=21549826}}</ref> These drugs are often used in [[dermatology]] and have been reported to have anti-fever and anti-inflammatory properties and treat some diseases.<ref name=":6" /><ref>{{Cite journal |last1=Paul Pui-Hay But |last2=Lai-Ching |first2=Lung |last3=Yan-Kit |first3=Tam |date=September 1990 |title=Ethnopharmacology of rhinoceros horn. I: Antipyretic effects of rhinoceros horn and other animal horns |url=http://dx.doi.org/10.1016/0378-8741(90)90005-e |journal=Journal of Ethnopharmacology |volume=30 |issue=2 |pages=157–168 |doi=10.1016/0378-8741(90)90005-e |issn=0378-8741}}</ref>
Cells from animal horns and shells are included in a group of medications call Medicinal Animal Horns and Shells (MAHS).<ref name="Luo-2011a" /><ref name="Luo-2011b">{{Cite journal |last1=Luo |first1=Jiaoyang |last2=Yan |first2=Dan |last3=Zhang |first3=Da |last4=Feng |first4=Xue |last5=Yan |first5=Yan |last6=Dong |first6=Xiaoping |last7=Xiao |first7=Xiaohe |date=2011-06-14 |title=Substitutes for endangered medicinal animal horns and shells exposed by antithrombotic and anticoagulation effects |url=https://pubmed.ncbi.nlm.nih.gov/21549826 |journal=Journal of Ethnopharmacology |volume=136 |issue=1 |pages=210–216 |doi=10.1016/j.jep.2011.04.053 |issn=1872-7573 |pmid=21549826}}</ref> These drugs are often used in [[dermatology]] and have been reported to have anti-fever and anti-inflammatory properties and treat some diseases.<ref name="Luo-2011b" /><ref>{{Cite journal |last1=Paul Pui-Hay But |last2=Lai-Ching |first2=Lung |last3=Yan-Kit |first3=Tam |date=September 1990 |title=Ethnopharmacology of rhinoceros horn. I: Antipyretic effects of rhinoceros horn and other animal horns |url=http://dx.doi.org/10.1016/0378-8741(90)90005-e |journal=Journal of Ethnopharmacology |volume=30 |issue=2 |pages=157–168 |doi=10.1016/0378-8741(90)90005-e |issn=0378-8741}}</ref>


=== Drugs derived from animal toxins ===
=== Drugs derived from animal toxins ===
[[File:Conus magus 001.jpg|thumb|The shell of a cone snail (Conus magus).]]
[[File:Conus magus 001.jpg|thumb|The shell of a cone snail (Conus magus).]]
Certain animals have obtained many adaptations of toxic substances due to a [[Evolutionary arms race|coevolutionary arms race]] between them and their predators.<ref>{{Cite journal |last=King |first=Glenn F |date=2011-09-23 |title=Venoms as a platform for human drugs: translating toxins into therapeutics |url=http://dx.doi.org/10.1517/14712598.2011.621940 |journal=Expert Opinion on Biological Therapy |volume=11 |issue=11 |pages=1469–1484 |doi=10.1517/14712598.2011.621940 |issn=1471-2598}}</ref> Some components of these toxins such as [[enzyme]]s and inorganic salts are used in modern medicine.<ref name=":7">{{Cite journal |last1=Fischer |first1=Thomas |last2=Riedl |first2=Rainer |date=February 2022 |title=Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins |journal=Drug Discovery Today |volume=27 |issue=2 |pages=567–575 |doi=10.1016/j.drudis.2021.10.003 |issn=1359-6446|doi-access=free }}</ref> For example, drugs such as [[Captopril]] and [[Lisinopril]] are derived from snake venom and inhibit the [[angiotensin-converting enzyme]].<ref>{{Cite journal |last1=da Costa Marques |first1=Maria Elizabeth |last2=de Araújo Tenório |first2=Humberto |last3=Dos Santos |first3=Claudio Wilian Victor |last4=Dos Santos |first4=Daniel Moreira |last5=de Lima |first5=Maria Elena |last6=Pereira |first6=Hugo Juarez Vieira |date=October 2016 |title=Angiotensin converting enzyme of Thalassophryne nattereri venom |url=https://pubmed.ncbi.nlm.nih.gov/27327905 |journal=International Journal of Biological Macromolecules |volume=91 |pages=980–986 |doi=10.1016/j.ijbiomac.2016.06.051 |issn=1879-0003 |pmid=27327905}}</ref><ref name=":7" /> Another example is [[Ziconotide]], a drug from the cone snail, ''[[Conus magus]]'', that is used to reduce pain.<ref name=":7" /><ref>{{Cite journal |last1=András |first1=Csaba D. |last2=Albert |first2=Csilla |last3=Salamon |first3=Szidónia |last4=Gálicza |first4=Judit |last5=András |first5=Réka |last6=András |first6=Emil |date=2011-10-10 |title=Conus magus vs. Irukandji syndrome: a computational approach of a possible new therapy |url=https://pubmed.ncbi.nlm.nih.gov/21777663 |journal=Brain Research Bulletin |volume=86 |issue=3–4 |pages=195–202 |doi=10.1016/j.brainresbull.2011.07.003 |issn=1873-2747 |pmid=21777663}}</ref>
Certain animals have obtained many adaptations of toxic substances due to a [[Evolutionary arms race|coevolutionary arms race]] between them and their predators.<ref>{{Cite journal |last=King |first=Glenn F |date=2011-09-23 |title=Venoms as a platform for human drugs: translating toxins into therapeutics |url=http://dx.doi.org/10.1517/14712598.2011.621940 |journal=Expert Opinion on Biological Therapy |volume=11 |issue=11 |pages=1469–1484 |doi=10.1517/14712598.2011.621940 |issn=1471-2598}}</ref> Some components of these toxins such as [[enzyme]]s and inorganic salts are used in modern medicine.<ref name="Fischer-2022">{{Cite journal |last1=Fischer |first1=Thomas |last2=Riedl |first2=Rainer |date=February 2022 |title=Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins |journal=Drug Discovery Today |volume=27 |issue=2 |pages=567–575 |doi=10.1016/j.drudis.2021.10.003 |issn=1359-6446|doi-access=free }}</ref> For example, drugs such as [[Captopril]] and [[Lisinopril]] are derived from snake venom and inhibit the [[angiotensin-converting enzyme]].<ref>{{Cite journal |last1=da Costa Marques |first1=Maria Elizabeth |last2=de Araújo Tenório |first2=Humberto |last3=Dos Santos |first3=Claudio Wilian Victor |last4=Dos Santos |first4=Daniel Moreira |last5=de Lima |first5=Maria Elena |last6=Pereira |first6=Hugo Juarez Vieira |date=October 2016 |title=Angiotensin converting enzyme of Thalassophryne nattereri venom |url=https://pubmed.ncbi.nlm.nih.gov/27327905 |journal=International Journal of Biological Macromolecules |volume=91 |pages=980–986 |doi=10.1016/j.ijbiomac.2016.06.051 |issn=1879-0003 |pmid=27327905}}</ref><ref name="Fischer-2022" /> Another example is [[Ziconotide]], a drug from the cone snail, ''[[Conus magus]]'', that is used to reduce pain.<ref name="Fischer-2022" /><ref>{{Cite journal |last1=András |first1=Csaba D. |last2=Albert |first2=Csilla |last3=Salamon |first3=Szidónia |last4=Gálicza |first4=Judit |last5=András |first5=Réka |last6=András |first6=Emil |date=2011-10-10 |title=Conus magus vs. Irukandji syndrome: a computational approach of a possible new therapy |url=https://pubmed.ncbi.nlm.nih.gov/21777663 |journal=Brain Research Bulletin |volume=86 |issue=3–4 |pages=195–202 |doi=10.1016/j.brainresbull.2011.07.003 |issn=1873-2747 |pmid=21777663}}</ref>


== Medicinal fungi ==
== Medicinal fungi ==
Edible fungi can contain important nutrients and [[biomolecule]]s that can be used for medical applications.<ref name=":1" /> For example, medicinal fungi have [[polysaccharide]]s that can be used to prevent the spread of cancer by activating different types of immune cells (namely [[T cell|T lymphocytes]], [[macrophage]]s, and [[Natural killer cell|NK cells]]), which inhibit cancer cell reproduction and [[metastasis]] (the process by which cancer can spread to different parts of the body).<ref name=":1" /><ref name=":4">{{Cite journal |last1=Jayachandran |first1=Muthukumaran |last2=Xiao |first2=Jianbo |last3=Xu |first3=Baojun |date=2017-09-08 |title=A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota |journal=International Journal of Molecular Sciences |volume=18 |issue=9 |pages=1934 |doi=10.3390/ijms18091934 |issn=1422-0067 |pmc=5618583 |pmid=28885559 |doi-access=free }}</ref>
Edible fungi can contain important nutrients and [[biomolecule]]s that can be used for medical applications.<ref name="Xu-2022" /> For example, medicinal fungi have [[polysaccharide]]s that can be used to prevent the spread of cancer by activating different types of immune cells (namely [[T cell|T lymphocytes]], [[macrophage]]s, and [[Natural killer cell|NK cells]]), which inhibit cancer cell reproduction and [[metastasis]] (the process by which cancer can spread to different parts of the body).<ref name="Xu-2022" /><ref name="Jayachandran-2017">{{Cite journal |last1=Jayachandran |first1=Muthukumaran |last2=Xiao |first2=Jianbo |last3=Xu |first3=Baojun |date=2017-09-08 |title=A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota |journal=International Journal of Molecular Sciences |volume=18 |issue=9 |pages=1934 |doi=10.3390/ijms18091934 |issn=1422-0067 |pmc=5618583 |pmid=28885559 |doi-access=free }}</ref>


Fungi have been used to make many antibiotics since Sir Alexander Flemming discovered Penicillin from the mold, ''Penicillium notatum''.<ref name=":3">{{Cite journal |last1=Silber |first1=Johanna |last2=Kramer |first2=Annemarie |last3=Labes |first3=Antje |last4=Tasdemir |first4=Deniz |date=2016-07-21 |title=From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics |journal=Marine Drugs |volume=14 |issue=7 |pages=137 |doi=10.3390/md14070137 |pmid=27455283 |pmc=4962027 |issn=1660-3397 |doi-access=free }}</ref><ref>{{Cite journal |last=Fleming |first=Alexander |date=1941-09-13 |title=Penicillin |journal=British Medical Journal |volume=2 |issue=4210 |pages=386 |issn=0007-1447 |pmc=2162878}}</ref> Recently, there has been a renewed interest in using fungi to create antibiotics since many bacteria have obtained [[antibiotic resistance]] due to the heavy selection pressures that antibiotics cause.<ref name=":3" /> The diversity of [[marine fungi]] makes them a potential new source of antibiotic compunds; however, most are difficult to cultivate in a laboratory setting.<ref name=":3" /><ref>{{Cite book |last=Verma |first=Vijay |editor-first1=Vijay C. |editor-first2=Alan C. |editor-last1=Verma |editor-last2=Gange |date=2013 |title=Advances in endophytic research |publisher=Springer Science & Business Media |doi=10.1007/978-81-322-1575-2|isbn=978-81-322-1574-5 |s2cid=44655247 }}</ref>
Fungi have been used to make many antibiotics since Sir Alexander Flemming discovered Penicillin from the mold, ''Penicillium notatum''.<ref name="Silber-2016">{{Cite journal |last1=Silber |first1=Johanna |last2=Kramer |first2=Annemarie |last3=Labes |first3=Antje |last4=Tasdemir |first4=Deniz |date=2016-07-21 |title=From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics |journal=Marine Drugs |volume=14 |issue=7 |pages=137 |doi=10.3390/md14070137 |pmid=27455283 |pmc=4962027 |issn=1660-3397 |doi-access=free }}</ref><ref>{{Cite journal |last=Fleming |first=Alexander |date=1941-09-13 |title=Penicillin |journal=British Medical Journal |volume=2 |issue=4210 |pages=386 |issn=0007-1447 |pmc=2162878}}</ref> Recently, there has been a renewed interest in using fungi to create antibiotics since many bacteria have obtained [[antibiotic resistance]] due to the heavy selection pressures that antibiotics cause.<ref name="Silber-2016" /> The diversity of [[marine fungi]] makes them a potential new source of antibiotic compunds; however, most are difficult to cultivate in a laboratory setting.<ref name="Silber-2016" /><ref>{{Cite book |last=Verma |first=Vijay |editor-first1=Vijay C. |editor-first2=Alan C. |editor-last1=Verma |editor-last2=Gange |date=2013 |title=Advances in endophytic research |publisher=Springer Science & Business Media |doi=10.1007/978-81-322-1575-2|isbn=978-81-322-1574-5 |s2cid=44655247 }}</ref>


Countries in Asia such as Egypt and China have been using fungi for medical uses for centuries.<ref name=":1">{{Cite journal |last1=Xu |first1=Jing |last2=Shen |first2=Rui |last3=Jiao |first3=Zhuoya |last4=Chen |first4=Weidong |last5=Peng |first5=Daiyin |last6=Wang |first6=Lei |last7=Yu |first7=Nianjun |last8=Peng |first8=Can |last9=Cai |first9=Biao |last10=Song |first10=Hang |last11=Chen |first11=Fengyuan |last12=Liu |first12=Bin |date=2022-06-24 |title=Current Advancements in Antitumor Properties and Mechanisms of Medicinal Components in Edible Mushrooms |journal=Nutrients |volume=14 |issue=13 |pages=2622 |doi=10.3390/nu14132622 |pmid=35807802 |pmc=9268676 |issn=2072-6643 |doi-access=free }}</ref><ref name=":4" />
Countries in Asia such as Egypt and China have been using fungi for medical uses for centuries.<ref name="Xu-2022">{{Cite journal |last1=Xu |first1=Jing |last2=Shen |first2=Rui |last3=Jiao |first3=Zhuoya |last4=Chen |first4=Weidong |last5=Peng |first5=Daiyin |last6=Wang |first6=Lei |last7=Yu |first7=Nianjun |last8=Peng |first8=Can |last9=Cai |first9=Biao |last10=Song |first10=Hang |last11=Chen |first11=Fengyuan |last12=Liu |first12=Bin |date=2022-06-24 |title=Current Advancements in Antitumor Properties and Mechanisms of Medicinal Components in Edible Mushrooms |journal=Nutrients |volume=14 |issue=13 |pages=2622 |doi=10.3390/nu14132622 |pmid=35807802 |pmc=9268676 |issn=2072-6643 |doi-access=free }}</ref><ref name="Jayachandran-2017" />


=== Turkey Tail Mushrooms ===
=== Turkey Tail Mushrooms ===
[[File:Turkey tail.jpg|thumb|Turkey tail mushrooms found in Georgia, USA.]]
[[File:Turkey tail.jpg|thumb|Turkey tail mushrooms found in Georgia, USA.]]
[[Toxoplasmosis]] is a disease caused by an infection by the parasite: [[Toxoplasma gondii]] (T. gondii).<ref name=":5" /><ref>{{Cite journal |last=Desmettre |first=T. |date=March 2020 |title=Toxoplasmosis and behavioural changes |url=https://pubmed.ncbi.nlm.nih.gov/31980266 |journal=Journal Français d'Ophtalmologie |volume=43 |issue=3 |pages=e89–e93 |doi=10.1016/j.jfo.2020.01.001 |issn=1773-0597 |pmid=31980266|s2cid=210892309 }}</ref> Current drugs used to treat this disease have many side effects and do not inhibit all forms of T. gondii.<ref>{{Cite journal |last1=Shiojiri |first1=Daisuke |last2=Kinai |first2=Ei |last3=Teruya |first3=Katsuji |last4=Kikuchi |first4=Yoshimi |last5=Oka |first5=Shinichi |date=2019 |title=Combination of Clindamycin and Azithromycin as Alternative Treatment for Toxoplasma gondii Encephalitis |journal=Emerging Infectious Diseases |volume=25 |issue=4 |pages=841–843 |doi=10.3201/eid2504.181689 |issn=1080-6059 |pmc=6433045 |pmid=30882331}}</ref> An ''in vitro'' study by Sharma et al. suggests that Turkey Tail mushroom extract could be used to treat Toxoplasmosis since it inhibited T. gondii growth.<ref name=":5">{{Cite journal |last1=Sharma |first1=Homa Nath |last2=Catrett |first2=Jonathan |last3=Nwokeocha |first3=Ogechi Destiny |last4=Boersma |first4=Melissa |last5=Miller |first5=Michael E. |last6=Napier |first6=Audrey |last7=Robertson |first7=Boakai K. |last8=Abugri |first8=Daniel A. |date=2023-05-29 |title=Anti-Toxoplasma gondii activity of Trametes versicolor (Turkey tail) mushroom extract |url=http://dx.doi.org/10.1038/s41598-023-35676-6 |journal=Scientific Reports |volume=13 |issue=1 |page=8667 |doi=10.1038/s41598-023-35676-6 |pmid=37248277 |pmc=10225767 |bibcode=2023NatSR..13.8667S |issn=2045-2322}}</ref>
[[Toxoplasmosis]] is a disease caused by an infection by the parasite: [[Toxoplasma gondii]] (T. gondii).<ref name="Sharma-2023" /><ref>{{Cite journal |last=Desmettre |first=T. |date=March 2020 |title=Toxoplasmosis and behavioural changes |url=https://pubmed.ncbi.nlm.nih.gov/31980266 |journal=Journal Français d'Ophtalmologie |volume=43 |issue=3 |pages=e89–e93 |doi=10.1016/j.jfo.2020.01.001 |issn=1773-0597 |pmid=31980266|s2cid=210892309 }}</ref> Current drugs used to treat this disease have many side effects and do not inhibit all forms of T. gondii.<ref>{{Cite journal |last1=Shiojiri |first1=Daisuke |last2=Kinai |first2=Ei |last3=Teruya |first3=Katsuji |last4=Kikuchi |first4=Yoshimi |last5=Oka |first5=Shinichi |date=2019 |title=Combination of Clindamycin and Azithromycin as Alternative Treatment for Toxoplasma gondii Encephalitis |journal=Emerging Infectious Diseases |volume=25 |issue=4 |pages=841–843 |doi=10.3201/eid2504.181689 |issn=1080-6059 |pmc=6433045 |pmid=30882331}}</ref> An ''in vitro'' study by Sharma et al. suggests that Turkey Tail mushroom extract could be used to treat Toxoplasmosis since it inhibited T. gondii growth.<ref name="Sharma-2023">{{Cite journal |last1=Sharma |first1=Homa Nath |last2=Catrett |first2=Jonathan |last3=Nwokeocha |first3=Ogechi Destiny |last4=Boersma |first4=Melissa |last5=Miller |first5=Michael E. |last6=Napier |first6=Audrey |last7=Robertson |first7=Boakai K. |last8=Abugri |first8=Daniel A. |date=2023-05-29 |title=Anti-Toxoplasma gondii activity of Trametes versicolor (Turkey tail) mushroom extract |url=http://dx.doi.org/10.1038/s41598-023-35676-6 |journal=Scientific Reports |volume=13 |issue=1 |page=8667 |doi=10.1038/s41598-023-35676-6 |pmid=37248277 |pmc=10225767 |bibcode=2023NatSR..13.8667S |issn=2045-2322}}</ref>


=== Pestalone ===
=== Pestalone ===
Pestalone is an antibiotic created from the marine fungus: ''Pestalotia sp''.<ref name=":3" /><ref>{{Cite journal |last1=Slavov |first1=Nikolay |last2=Cvengroš |first2=Ján |last3=Neudörfl |first3=Jörg‐Martin |last4=Schmalz |first4=Hans‐Günther |date=2010-08-31 |title=Total Synthesis of the Marine Antibiotic Pestalone and its Surprisingly Facile Conversion into Pestalalactone and Pestalachloride A |url=http://dx.doi.org/10.1002/anie.201003755 |journal=Angewandte Chemie International Edition |volume=49 |issue=41 |pages=7588–7591 |doi=10.1002/anie.201003755 |pmid=21038453 |issn=1433-7851}}</ref> M. Cueto et al. (2001–11) found that it has antibiotic activity against two bacteria species that have gained resistance to antibiotics: vancomycin-resistant ''[[Enterococcus faecium]]'' and methicillin-resistant ''[[Staphylococcus aureus]]''.<ref>{{Cite journal |last1=Cueto |first1=M. |last2=Jensen |first2=P. R. |last3=Kauffman |first3=C. |last4=Fenical |first4=W. |last5=Lobkovsky |first5=E. |last6=Clardy |first6=J. |date=November 2001 |title=Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge |url=https://pubmed.ncbi.nlm.nih.gov/11720529 |journal=Journal of Natural Products |volume=64 |issue=11 |pages=1444–1446 |doi=10.1021/np0102713 |issn=0163-3864 |pmid=11720529}}</ref>
Pestalone is an antibiotic created from the marine fungus: ''Pestalotia sp''.<ref name="Silber-2016" /><ref>{{Cite journal |last1=Slavov |first1=Nikolay |last2=Cvengroš |first2=Ján |last3=Neudörfl |first3=Jörg‐Martin |last4=Schmalz |first4=Hans‐Günther |date=2010-08-31 |title=Total Synthesis of the Marine Antibiotic Pestalone and its Surprisingly Facile Conversion into Pestalalactone and Pestalachloride A |url=http://dx.doi.org/10.1002/anie.201003755 |journal=Angewandte Chemie International Edition |volume=49 |issue=41 |pages=7588–7591 |doi=10.1002/anie.201003755 |pmid=21038453 |issn=1433-7851}}</ref> M. Cueto et al. (2001–11) found that it has antibiotic activity against two bacteria species that have gained resistance to antibiotics: vancomycin-resistant ''[[Enterococcus faecium]]'' and methicillin-resistant ''[[Staphylococcus aureus]]''.<ref>{{Cite journal |last1=Cueto |first1=M. |last2=Jensen |first2=P. R. |last3=Kauffman |first3=C. |last4=Fenical |first4=W. |last5=Lobkovsky |first5=E. |last6=Clardy |first6=J. |date=November 2001 |title=Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge |url=https://pubmed.ncbi.nlm.nih.gov/11720529 |journal=Journal of Natural Products |volume=64 |issue=11 |pages=1444–1446 |doi=10.1021/np0102713 |issn=0163-3864 |pmid=11720529}}</ref>


==Zoopharmacognosy==
==Zoopharmacognosy==
[[Image:Lightmatter chimpanzee2.jpg|right|thumb|[[Ape]]s and [[monkey]]s are an example of animals using plants as medicine rather than food.]]
[[Image:Lightmatter chimpanzee2.jpg|right|thumb|[[Ape]]s and [[monkey]]s are an example of animals using plants as medicine rather than food.]]
{{main|Zoopharmacognosy}}
{{main|Zoopharmacognosy}}
''[[Zoopharmacognosy]]'' is the study of how animals select certain plants as self-medication to treat or prevent disease.<ref name=":2" /> Usually, this behavior is a result of [[coevolution]] between the animal and the plant that it uses for self-medication.<ref name=":2" /> For example, apes have been observed selecting a particular part of a medicinal plant by taking off leaves and breaking the stem to suck out the juice.<ref name=Campbell>''Biology'' (4th edition) N.A.Campbell, p.23 'An Interview with Eloy Rodriguez' (Benjamin Cummings NY, 1996) {{ISBN|0-8053-1957-3}}</ref> In an interview with the late [[Neil Campbell (scientist)|Neil Campbell]], [[Eloy Rodriguez]] describes the importance of biodiversity:
''[[Zoopharmacognosy]]'' is the study of how animals select certain plants as self-medication to treat or prevent disease.<ref name="Robles-1995" /> Usually, this behavior is a result of [[coevolution]] between the animal and the plant that it uses for self-medication.<ref name="Robles-1995" /> For example, apes have been observed selecting a particular part of a medicinal plant by taking off leaves and breaking the stem to suck out the juice.<ref name=Campbell>''Biology'' (4th edition) N.A.Campbell, p.23 'An Interview with Eloy Rodriguez' (Benjamin Cummings NY, 1996) {{ISBN|0-8053-1957-3}}</ref> In an interview with the late [[Neil Campbell (scientist)|Neil Campbell]], [[Eloy Rodriguez]] describes the importance of biodiversity:


"Some of the compounds we've identified by zoopharmacognosy kill parasitic worms, and some of these chemicals may be useful against tumors. There is no question that the templates for most drugs are in the natural world."<ref name="Campbell" />
"Some of the compounds we've identified by zoopharmacognosy kill parasitic worms, and some of these chemicals may be useful against tumors. There is no question that the templates for most drugs are in the natural world."<ref name="Campbell" />

Latest revision as of 20:13, 22 March 2024

Biodiversity plays a vital role in maintaining human and animal health because numerous plants, animals, and fungi are used in medicine to produce vital vitamins, painkillers, antibiotics, and other medications.[1][2][3] Natural products have been recognized and used as medicines by ancient cultures all around the world.[4] Some animals are also known to self-medicate using plants and other materials available to them.[5]

Plant drugs[edit]

Many plant species have been studied thoroughly for their value as a source of medicine.[6][7] They have a wide range of benefits such as anti-fever and anti-inflammatory properties, can treat diseases such as malaria and diabetes, and are used as vitamins and antibiotic and antifungal medications.[7][8][9][10] More than 60% of the world's population relies almost entirely on plant medicine for primary health care,[11] and about 119 pure chemicals such as caffeine, methyl salicylate, and quinine are extracted from less than 90 species of higher plants and used as medicines throughout the world.[4]

In China, Japan, India, and Germany, there is a great deal of interest in and support for the search for new drugs from higher plants.[4]

Sweet Wormwood[edit]

Sweet wormwood (Artemisia annua)

Sweet Wormwood (Artemisia annua) grows in all continents besides Antarctica.[12] It is the only known source of artemisinin, a drug that has been used to treat fevers due to malaria, exhaustion, or many other causes, since ancient times.[13] Upon further study, scientists have found that Sweet Wormwood inhibits activity of various bacteria, viruses, and parasites and exhibits anti-cancer and anti-inflammatory properties.[13][14][15]

Animal-derived drugs[edit]

Animal-derived drugs are a major source of modern medications used around the world.[2][16] The use of these drugs can cause certain animals to become endangered or threatened; however, it is difficult to identify the animal species used in medicine since animal-derived drugs are often processed, which degrades their DNA.[2]

Medicinal Animal Horns and Shells[edit]

Cells from animal horns and shells are included in a group of medications call Medicinal Animal Horns and Shells (MAHS).[2][17] These drugs are often used in dermatology and have been reported to have anti-fever and anti-inflammatory properties and treat some diseases.[17][18]

Drugs derived from animal toxins[edit]

The shell of a cone snail (Conus magus).

Certain animals have obtained many adaptations of toxic substances due to a coevolutionary arms race between them and their predators.[19] Some components of these toxins such as enzymes and inorganic salts are used in modern medicine.[20] For example, drugs such as Captopril and Lisinopril are derived from snake venom and inhibit the angiotensin-converting enzyme.[21][20] Another example is Ziconotide, a drug from the cone snail, Conus magus, that is used to reduce pain.[20][22]

Medicinal fungi[edit]

Edible fungi can contain important nutrients and biomolecules that can be used for medical applications.[3] For example, medicinal fungi have polysaccharides that can be used to prevent the spread of cancer by activating different types of immune cells (namely T lymphocytes, macrophages, and NK cells), which inhibit cancer cell reproduction and metastasis (the process by which cancer can spread to different parts of the body).[3][23]

Fungi have been used to make many antibiotics since Sir Alexander Flemming discovered Penicillin from the mold, Penicillium notatum.[24][25] Recently, there has been a renewed interest in using fungi to create antibiotics since many bacteria have obtained antibiotic resistance due to the heavy selection pressures that antibiotics cause.[24] The diversity of marine fungi makes them a potential new source of antibiotic compunds; however, most are difficult to cultivate in a laboratory setting.[24][26]

Countries in Asia such as Egypt and China have been using fungi for medical uses for centuries.[3][23]

Turkey Tail Mushrooms[edit]

Turkey tail mushrooms found in Georgia, USA.

Toxoplasmosis is a disease caused by an infection by the parasite: Toxoplasma gondii (T. gondii).[27][28] Current drugs used to treat this disease have many side effects and do not inhibit all forms of T. gondii.[29] An in vitro study by Sharma et al. suggests that Turkey Tail mushroom extract could be used to treat Toxoplasmosis since it inhibited T. gondii growth.[27]

Pestalone[edit]

Pestalone is an antibiotic created from the marine fungus: Pestalotia sp.[24][30] M. Cueto et al. (2001–11) found that it has antibiotic activity against two bacteria species that have gained resistance to antibiotics: vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus.[31]

Zoopharmacognosy[edit]

Apes and monkeys are an example of animals using plants as medicine rather than food.

Zoopharmacognosy is the study of how animals select certain plants as self-medication to treat or prevent disease.[5] Usually, this behavior is a result of coevolution between the animal and the plant that it uses for self-medication.[5] For example, apes have been observed selecting a particular part of a medicinal plant by taking off leaves and breaking the stem to suck out the juice.[32] In an interview with the late Neil Campbell, Eloy Rodriguez describes the importance of biodiversity:

"Some of the compounds we've identified by zoopharmacognosy kill parasitic worms, and some of these chemicals may be useful against tumors. There is no question that the templates for most drugs are in the natural world."[32]

References[edit]

  1. ^ Fajinmi, Olufunke O.; Olarewaju, Olaoluwa O.; Van Staden, Johannes (2023-03-03). "Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa". Plants. 12 (5): 1174. doi:10.3390/plants12051174. ISSN 2223-7747. PMC 10007054.
  2. ^ a b c d Luo, Jiaoyang; Yan, Dan; Zhang, Da; Han, Yumei; Dong, Xiaoping; Yang, Yong; Deng, Kejun; Xiao, Xiaohe (2011-09-09). "Application of 12S rRNA Barcodes for the Identification of Animal-Derived Drugs". Journal of Pharmacy & Pharmaceutical Sciences. 14 (3): 358. doi:10.18433/j3n017. ISSN 1482-1826.
  3. ^ a b c d Xu, Jing; Shen, Rui; Jiao, Zhuoya; Chen, Weidong; Peng, Daiyin; Wang, Lei; Yu, Nianjun; Peng, Can; Cai, Biao; Song, Hang; Chen, Fengyuan; Liu, Bin (2022-06-24). "Current Advancements in Antitumor Properties and Mechanisms of Medicinal Components in Edible Mushrooms". Nutrients. 14 (13): 2622. doi:10.3390/nu14132622. ISSN 2072-6643. PMC 9268676. PMID 35807802.
  4. ^ a b c N.R. Farnsworth. Screening Plants for New Medicine. IN: E.O Wilson, editor. 1988. Biodiversity, Natrional Academy. ISBN 0-309-03783-2(pbk.)
  5. ^ a b c Robles, Mario; Aregullin, Manuel; West, Jan; Rodriguez, Eloy (June 1995). "Recent Studies on the Zoopharmacognosy, Pharmacology and Neurotoxicology of Sesquiterpene Lactones*". Planta Medica. 61 (3): 199–203. doi:10.1055/s-2006-958055. ISSN 0032-0943.
  6. ^ Alaribe, Franca Nneka; Motaung, Keolebogile Shirley Caroline Mamotswere (June 2019). "Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent". Tissue Engineering. Part A. 25 (11–12): 827–829. doi:10.1089/ten.TEA.2019.0060. ISSN 1937-335X. PMID 30838937.
  7. ^ a b Nayim, Paul; Mbaveng, Armelle T.; Wamba, Brice E. N.; Fankam, Aimé G.; Dzotam, Joachim K.; Kuete, Victor (2018). "Antibacterial and Antibiotic-Potentiating Activities of Thirteen Cameroonian Edible Plants against Gram-Negative Resistant Phenotypes". TheScientificWorldJournal. 2018: 4020294. doi:10.1155/2018/4020294. ISSN 1537-744X. PMC 6151687. PMID 30275799.
  8. ^ Alaribe, Franca Nneka; Motaung, Keolebogile Shirley Caroline Mamots (June 2019). "Medicinal Plants in Tissue Engineering and Regenerative Medicine in the African Continent". Tissue Engineering Part A. 25 (11–12): 827–829. doi:10.1089/ten.tea.2019.0060. ISSN 1937-3341.
  9. ^ Zarayneh, Simin; Sepahi, Abbas Akhavan; Jonoobi, Mehdi; Rasouli, Hassan (2018-10-15). "Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes". International Journal of Biological Macromolecules. 118 (Pt A): 1045–1054. doi:10.1016/j.ijbiomac.2018.06.160. ISSN 1879-0003. PMID 29966671.
  10. ^ Benedik, Evgen (March 2022). "Sources of vitamin D for humans". International Journal for Vitamin and Nutrition Research. 92 (2): 118–125. doi:10.1024/0300-9831/a000733. ISSN 0300-9831. PMID 34658250.
  11. ^ Kevin J. Gaston & John I. Spicer. 2004. Biodiversity: an introduction, Blackwell Publishing. 2nd Ed. ISBN 1-4051-1857-1(pbk.)
  12. ^ Septembre-Malaterre, Axelle; Lalarizo Rakoto, Mahary; Marodon, Claude; Bedoui, Yosra; Nakab, Jessica; Simon, Elisabeth; Hoarau, Ludovic; Savriama, Stephane; Strasberg, Dominique; Guiraud, Pascale; Selambarom, Jimmy; Gasque, Philippe (2020-07-15). "Artemisia annua, a Traditional Plant Brought to Light". International Journal of Molecular Sciences. 21 (14): 4986. doi:10.3390/ijms21144986. ISSN 1422-0067. PMC 7404215.
  13. ^ a b Feng, Xinchi; Cao, Shijie; Qiu, Feng; Zhang, Boli (2020). "Traditional application and modern pharmacological research of Artemisia annua L". Pharmacology & Therapeutics. 216: 107650. doi:10.1016/j.pharmthera.2020.107650. ISSN 1879-016X. PMID 32758647.
  14. ^ Wojtkowiak-Giera, Agnieszka; Derda, Monika; Kosik-Bogacka, Danuta; Kolasa-Wołosiuk, Agnieszka; Wandurska-Nowak, Elżbieta; Jagodziński, Paweł P.; Hadaś, Edward (2019). "The modulatory effect of Artemisia annua L. on toll-like receptor expression in Acanthamoeba infected mouse lungs". Experimental Parasitology. 199: 24–29. doi:10.1016/j.exppara.2019.02.011. ISSN 0014-4894.
  15. ^ Efferth, Thomas (2018). "Beyond malaria: The inhibition of viruses by artemisinin-type compounds". Biotechnology Advances. 36 (6): 1730–1737. doi:10.1016/j.biotechadv.2018.01.001. ISSN 0734-9750.
  16. ^ Wragge-Morley, Alexander (December 2022). "Medicine, connoisseurship, and the animal body". History of Science. 60 (4): 481–499. doi:10.1177/0073275320949001. ISSN 1753-8564. PMID 32847416.
  17. ^ a b Luo, Jiaoyang; Yan, Dan; Zhang, Da; Feng, Xue; Yan, Yan; Dong, Xiaoping; Xiao, Xiaohe (2011-06-14). "Substitutes for endangered medicinal animal horns and shells exposed by antithrombotic and anticoagulation effects". Journal of Ethnopharmacology. 136 (1): 210–216. doi:10.1016/j.jep.2011.04.053. ISSN 1872-7573. PMID 21549826.
  18. ^ Paul Pui-Hay But; Lai-Ching, Lung; Yan-Kit, Tam (September 1990). "Ethnopharmacology of rhinoceros horn. I: Antipyretic effects of rhinoceros horn and other animal horns". Journal of Ethnopharmacology. 30 (2): 157–168. doi:10.1016/0378-8741(90)90005-e. ISSN 0378-8741.
  19. ^ King, Glenn F (2011-09-23). "Venoms as a platform for human drugs: translating toxins into therapeutics". Expert Opinion on Biological Therapy. 11 (11): 1469–1484. doi:10.1517/14712598.2011.621940. ISSN 1471-2598.
  20. ^ a b c Fischer, Thomas; Riedl, Rainer (February 2022). "Paracelsus' legacy in the faunal realm: Drugs deriving from animal toxins". Drug Discovery Today. 27 (2): 567–575. doi:10.1016/j.drudis.2021.10.003. ISSN 1359-6446.
  21. ^ da Costa Marques, Maria Elizabeth; de Araújo Tenório, Humberto; Dos Santos, Claudio Wilian Victor; Dos Santos, Daniel Moreira; de Lima, Maria Elena; Pereira, Hugo Juarez Vieira (October 2016). "Angiotensin converting enzyme of Thalassophryne nattereri venom". International Journal of Biological Macromolecules. 91: 980–986. doi:10.1016/j.ijbiomac.2016.06.051. ISSN 1879-0003. PMID 27327905.
  22. ^ András, Csaba D.; Albert, Csilla; Salamon, Szidónia; Gálicza, Judit; András, Réka; András, Emil (2011-10-10). "Conus magus vs. Irukandji syndrome: a computational approach of a possible new therapy". Brain Research Bulletin. 86 (3–4): 195–202. doi:10.1016/j.brainresbull.2011.07.003. ISSN 1873-2747. PMID 21777663.
  23. ^ a b Jayachandran, Muthukumaran; Xiao, Jianbo; Xu, Baojun (2017-09-08). "A Critical Review on Health Promoting Benefits of Edible Mushrooms through Gut Microbiota". International Journal of Molecular Sciences. 18 (9): 1934. doi:10.3390/ijms18091934. ISSN 1422-0067. PMC 5618583. PMID 28885559.
  24. ^ a b c d Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz (2016-07-21). "From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics". Marine Drugs. 14 (7): 137. doi:10.3390/md14070137. ISSN 1660-3397. PMC 4962027. PMID 27455283.
  25. ^ Fleming, Alexander (1941-09-13). "Penicillin". British Medical Journal. 2 (4210): 386. ISSN 0007-1447. PMC 2162878.
  26. ^ Verma, Vijay (2013). Verma, Vijay C.; Gange, Alan C. (eds.). Advances in endophytic research. Springer Science & Business Media. doi:10.1007/978-81-322-1575-2. ISBN 978-81-322-1574-5. S2CID 44655247.
  27. ^ a b Sharma, Homa Nath; Catrett, Jonathan; Nwokeocha, Ogechi Destiny; Boersma, Melissa; Miller, Michael E.; Napier, Audrey; Robertson, Boakai K.; Abugri, Daniel A. (2023-05-29). "Anti-Toxoplasma gondii activity of Trametes versicolor (Turkey tail) mushroom extract". Scientific Reports. 13 (1): 8667. Bibcode:2023NatSR..13.8667S. doi:10.1038/s41598-023-35676-6. ISSN 2045-2322. PMC 10225767. PMID 37248277.
  28. ^ Desmettre, T. (March 2020). "Toxoplasmosis and behavioural changes". Journal Français d'Ophtalmologie. 43 (3): e89–e93. doi:10.1016/j.jfo.2020.01.001. ISSN 1773-0597. PMID 31980266. S2CID 210892309.
  29. ^ Shiojiri, Daisuke; Kinai, Ei; Teruya, Katsuji; Kikuchi, Yoshimi; Oka, Shinichi (2019). "Combination of Clindamycin and Azithromycin as Alternative Treatment for Toxoplasma gondii Encephalitis". Emerging Infectious Diseases. 25 (4): 841–843. doi:10.3201/eid2504.181689. ISSN 1080-6059. PMC 6433045. PMID 30882331.
  30. ^ Slavov, Nikolay; Cvengroš, Ján; Neudörfl, Jörg‐Martin; Schmalz, Hans‐Günther (2010-08-31). "Total Synthesis of the Marine Antibiotic Pestalone and its Surprisingly Facile Conversion into Pestalalactone and Pestalachloride A". Angewandte Chemie International Edition. 49 (41): 7588–7591. doi:10.1002/anie.201003755. ISSN 1433-7851. PMID 21038453.
  31. ^ Cueto, M.; Jensen, P. R.; Kauffman, C.; Fenical, W.; Lobkovsky, E.; Clardy, J. (November 2001). "Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge". Journal of Natural Products. 64 (11): 1444–1446. doi:10.1021/np0102713. ISSN 0163-3864. PMID 11720529.
  32. ^ a b Biology (4th edition) N.A.Campbell, p.23 'An Interview with Eloy Rodriguez' (Benjamin Cummings NY, 1996) ISBN 0-8053-1957-3