Imaging informatics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Remove nonverifiable facts; MOS:SECTIONS
Line 13: Line 13:
*[[computer science]] – studying the use of computer algorithms for applications such as [[Computer-assisted diagnosis|computer assisted diagnosis]] and [[computer vision]]
*[[computer science]] – studying the use of computer algorithms for applications such as [[Computer-assisted diagnosis|computer assisted diagnosis]] and [[computer vision]]


==Standards and Protocols==
==Standards and protocols==
In the domain of imaging informatics, it is imperative to ascertain that the information pertaining to industry standards and data-sharing protocols is contemporaneous. The expeditious advancement in this field necessitates a vigilant approach to sustain uniformity, foster interoperability, and guarantee the efficacious dissemination of imaging data. To this end, several pivotal facets warrant rigorous consideration:


===DICOM standard===
[[DICOM]] (Digital Imaging and Communications in Medicine) Standards


The Digital Imaging and Communications in Medicine (DICOM) standard delineates a sophisticated structural schema that integrates medical imaging data with pertinent patient identifiers into unified data sets, analogous to the embedded metadata in JPEG images. Such DICOM entities are constituted by a multitude of attributes, notably encapsulating pixel data, which in certain imaging modalities, corresponds to discrete images or, alternatively, an array of frames exemplifying kinetic or volumetric data, as observed in cine loops or multi-dimensional scans in nuclear medicine. This architecture accommodates the assimilation of intricate, multi-faceted data into a monolithic DICOM file. The standard accommodates a spectrum of pixel data compression algorithms, including but not limited to JPEG and JPEG 2000, and provisionally allows for holistic data set compression. DICOM specifies three encodings for data elements, with a predilection for explicit value representations, barring specific exceptions as elaborated in Part 5 of the DICOM compendium. Uniformly applied across diverse applications, the file manifestation customarily incorporates a header that houses essential attributes and data on the originating application.
The Digital Imaging and Communications in Medicine ([[DICOM]]) standard delineates a sophisticated structural schema that integrates medical imaging data with pertinent patient identifiers into unified data sets, analogous to the embedded metadata in JPEG images. Such DICOM entities are constituted by a multitude of attributes, notably encapsulating pixel data, which in certain imaging modalities, corresponds to discrete images or, alternatively, an array of frames exemplifying kinetic or volumetric data, as observed in cine loops or multi-dimensional scans in nuclear medicine. This architecture accommodates the assimilation of intricate, multi-faceted data into a monolithic DICOM file. The standard accommodates a spectrum of pixel data compression algorithms, including but not limited to JPEG and JPEG 2000, and provisionally allows for holistic data set compression. DICOM specifies three encodings for data elements, with a predilection for explicit value representations, barring specific exceptions as elaborated in Part 5 of the DICOM compendium. Uniformly applied across diverse applications, the file manifestation customarily incorporates a header that houses essential attributes and data on the originating application.
[[File:DICOM InfoModel.png|thumb|'''DICOM InfoModel''']]
[[File:DICOM InfoModel.png|thumb|'''DICOM InfoModel''']]

The proposed workflow integrates the use of DICOM Structured Reporting (SR), in which essential measurements are encoded as DICOM SR objects. These objects are then utilized to fill a predefined SR template, resulting in the creation of a standardized report composed of discrete data elements. This report is subsequently transmitted to the Electronic Medical Record (EMR) system. The discrete data extracted from these reports facilitate the longitudinal monitoring of individual patient metrics, are forwarded to data registries, or are leveraged for clinical research purposes.<ref>{{cite journal |last1=Chen |first1=D. |last2=Wronka |first2=A. |last3=Al-Aswad |first3=L.A. |title=Furthering the adoption of digital imaging and communications in medicine standards in ophthalmology |journal=JAMA ophthalmology |date=2022 |volume=140(8) |page=761-762 |url=https://jamanetwork.com/journals/jamaophthalmology/article-abstract/2793765?casa_token=I2mOrAuanGoAAAAA:RirKKnZqZWNXDX1LhBlDbQVKS1NOsPmv0kQD--vtk2ukLnQjds79WLhqqLH3TqQFhGyWK1dUZULn}}</ref>
The proposed workflow integrates the use of DICOM Structured Reporting (SR), in which essential measurements are encoded as DICOM SR objects. These objects are then utilized to fill a predefined SR template, resulting in the creation of a standardized report composed of discrete data elements. This report is subsequently transmitted to the Electronic Medical Record (EMR) system. The discrete data extracted from these reports facilitate the longitudinal monitoring of individual patient metrics, are forwarded to data registries, or are leveraged for clinical research purposes.<ref>{{cite journal |last1=Chen |first1=D. |last2=Wronka |first2=A. |last3=Al-Aswad |first3=L.A. |title=Furthering the adoption of digital imaging and communications in medicine standards in ophthalmology |journal=JAMA ophthalmology |date=2022 |volume=140(8) |page=761-762 |url=https://jamanetwork.com/journals/jamaophthalmology/article-abstract/2793765?casa_token=I2mOrAuanGoAAAAA:RirKKnZqZWNXDX1LhBlDbQVKS1NOsPmv0kQD--vtk2ukLnQjds79WLhqqLH3TqQFhGyWK1dUZULn}}</ref>



Revision as of 01:53, 20 April 2024

Imaging informatics, also known as radiology informatics or medical imaging informatics, is a subspecialty of biomedical informatics that aims to improve the efficiency, accuracy, usability and reliability of medical imaging services within the healthcare enterprise.[1] It is devoted to the study of how information about and contained within medical images is retrieved, analyzed, enhanced, and exchanged throughout the medical enterprise.

As radiology is an inherently data-intensive and technology-driven specialty, those in this branch of medicine have become leaders in Imaging Informatics. However, with the proliferation of digitized images across the practice of medicine to include fields such as cardiology, ophthalmology, dermatology, surgery, gastroenterology, obstetrics, gynecology and pathology, the advances in Imaging Informatics are also being tested and applied in other areas of medicine. Various industry players and vendors involved with medical imaging, along with IT experts and other biomedical informatics professionals, are contributing and getting involved in this expanding field.

Imaging informatics exists at the intersection of several broad fields:

Standards and protocols

DICOM standard

The Digital Imaging and Communications in Medicine (DICOM) standard delineates a sophisticated structural schema that integrates medical imaging data with pertinent patient identifiers into unified data sets, analogous to the embedded metadata in JPEG images. Such DICOM entities are constituted by a multitude of attributes, notably encapsulating pixel data, which in certain imaging modalities, corresponds to discrete images or, alternatively, an array of frames exemplifying kinetic or volumetric data, as observed in cine loops or multi-dimensional scans in nuclear medicine. This architecture accommodates the assimilation of intricate, multi-faceted data into a monolithic DICOM file. The standard accommodates a spectrum of pixel data compression algorithms, including but not limited to JPEG and JPEG 2000, and provisionally allows for holistic data set compression. DICOM specifies three encodings for data elements, with a predilection for explicit value representations, barring specific exceptions as elaborated in Part 5 of the DICOM compendium. Uniformly applied across diverse applications, the file manifestation customarily incorporates a header that houses essential attributes and data on the originating application.

DICOM InfoModel

The proposed workflow integrates the use of DICOM Structured Reporting (SR), in which essential measurements are encoded as DICOM SR objects. These objects are then utilized to fill a predefined SR template, resulting in the creation of a standardized report composed of discrete data elements. This report is subsequently transmitted to the Electronic Medical Record (EMR) system. The discrete data extracted from these reports facilitate the longitudinal monitoring of individual patient metrics, are forwarded to data registries, or are leveraged for clinical research purposes.[2]

Areas of interest

Key areas relevant to Imaging informatics include:

Training

In the US and some other countries, radiologists who wish to pursue sub-specialty training in this field can undergo fellowship training in imaging informatics. Medical Imaging Informatics Fellowships are done after completion of Board Certification in Diagnostic Radiology, and may be pursued concurrently with other sub-specialty radiology fellowships.

The American Board of Imaging Informatics (ABII) also administers a certification examination for Imaging Informatics Professionals. PARCA (PACS Administrators Registry and Certification Association) certifications also exist for imaging informatics professionals.[4]

The American Board of Preventive Medicine (ABPM) offers a certification examination for Clinical Informatics for physicians who have primary board certification with the American Board of Medical Specialties, a medical license and a medical degree. There are two pathways to be eligible to sit for the examination: Practice Pathway (open through 2022) for those who have not completed ACGME-accredited fellowship training in Clinical Informatics and ACGME-Accredited Fellowship Pathway of at least 24 months in duration.[5]

References

  1. ^ Branstetter, B (2007). "Basics of Imaging Informatics". Radiology. 243 (3): 656–67. doi:10.1148/radiol.2433060243. PMID 17431128.
  2. ^ Chen, D.; Wronka, A.; Al-Aswad, L.A. (2022). "Furthering the adoption of digital imaging and communications in medicine standards in ophthalmology". JAMA ophthalmology. 140(8): 761-762.
  3. ^ TRIP – an initiative between the then Society of Computer Applications in Radiology (SCAR), now known as the Society of Imaging Informatics in Medicine (SIIM) [1] Archived 2008-08-08 at the Wayback Machine
  4. ^ "Home". abii.org.
  5. ^ "Clinical Informatics – American Board of Preventive Medicine".

External links