Jump to content

2,3-Butanediol

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by BG19bot (talk | contribs) at 06:05, 30 September 2016 (v1.40b - WP:WCW project (Unicode control characters)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

2,3-Butanediol
2,3-butanediol
Names
IUPAC name
Butane-2,3-diol
Other names
2,3-Butylene glycol
Dimethylene glycol
2,3-Dihydroxybutane
Butan-2,3-diol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.007.431 Edit this at Wikidata
EC Number
  • 208-173-6
  • InChI=1S/C4H10O2/c1-3(5)4(2)6/h3-6H,1-2H3
    Key: OWBTYPJTUOEWEK-UHFFFAOYSA-N
  • CC(C(C)O)O
Properties
C4H10O2
Molar mass 90.121 g/mol
Appearance nearly colorless solid or liquid
Odor odorless
Density 0.987 g/mL
Melting point 19 °C (66 °F; 292 K)
Boiling point 177 °C (351 °F; 450 K)
miscible
Solubility soluble in alcohol, ketones, ether
log P -0.92
Vapor pressure 0.23 hPa (20 °C)
Acidity (pKa) 14.9
1.4366
Thermochemistry
213.0 J/K mol
-544.8 kJ/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Flash point 85 °C (185 °F; 358 K)
402 °C (756 °F; 675 K)
Lethal dose or concentration (LD, LC):
5462 mg/kg (rat, oral)
Related compounds
Related butanediols
1,4-Butanediol
1,3-Butanediol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

2,3-Butanediol is a organic compound with the formula is (CH3)2(CHOH)2.[1] 2,3-Butanediol has three stereoisomers, all of which are colorless, viscous liquids. Butanediols have applications as precursors to various plastics and pesticides.

Isomerism

Of the three stereoisomers, two are enantiomers (levo- and dextro-2,3-butanediol) and one is a meso compound.[2][3] The enantiomeric pair have (2R, 3R) and (2S, 3S) configurations at carbons 2 and 3, while the meso compound has configuration (2R, 3S) or, equivalently, (2S, 3R).

Industrial production and uses

2,3-Butanediol is prepared by hydrolysis of 2,3-butene oxide:[4]

(CH3CH)2O + H2O → (CH3)2(CHOH)2

The isomer distribution depends on the stereochemistry of the epoxide.

The meso isomer is used to combine with naphthalene-1,5-diisocyanate. The resulting polyurethane is called "Vulkollan".[4]

Biological production

The (2R,3R)-stereoisomer of 2,3-butanediol is produced by a variety of microorganisms in a process known as butanediol fermentation. It is found naturally in cocoa butter, in the roots of Ruta graveolens, sweet corn, and in rotten mussels. It is used in the resolution of carbonyl compounds in gas chromatography.[5]

During World War II research was done towards producing 2,3-butanediol by fermentation in order to produce 1,3-butadiene, the monomer of the polybutadiene used in a leading type of synthetic rubber.[6]

References

  1. ^ 2,3-Butanediol at SigmaAldrich
  2. ^ Boutron P (1992). "Cryoprotection of red blood cells by a 2,3-butanediol containing mainly the levo and dextro isomers". Cryobiology. 29 (3): 347–358. PMID 1499320.
  3. ^ Wang Y, Tao F, Xu P (2014). "Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae". Journal of Biological Chemistry. 289 (9): 6080–6090. doi:10.1074/jbc.M113.525535. PMC 3937674. PMID 24429283.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ a b Heinz Gräfje, Wolfgang Körnig, Hans-Martin Weitz, Wolfgang Reiß, Guido Steffan, Herbert Diehl, Horst Bosche, Kurt Schneider and Heinz Kieczka "Butanediols, Butenediol, and Butynediol" in Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a04_455
  5. ^ "3,5-dinitrobenzoic acid". Combined Chemical Dictionary. Chapman and Hall/CRC Press. 2007.
  6. ^ "Fermentation Derived 2,3-Butanediol", by Marcio Voloch et al. in Comprehensive Biotechnology, Pergamon Press Ltd., England Vol 2, Section 3, p. 933 (1986).

7. C. De Mas, N. B. Jansen, G. T. Tsao (1988). "Production of optically active 2,3-butanediol by Bacillus polymyxa." Biotechnol. Bioeng. 31(4): 366-77.