Jump to content

Decay energy

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2601:1c0:8200:1470:a8b2:28dc:18fd:d042 (talk) at 07:35, 28 January 2021 (changed dm to delta m, and made correction to activity equation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The decay energy is the energy released by a radioactive decay. Radioactive decay is the process in which an unstable atomic nucleus loses energy by emitting ionizing particles and radiation. This decay, or loss of energy, results in an atom of one type, called the parent nuclide transforming to an atom of a different type, called the daughter nuclide.

Decay calculation

The energy difference of the reactants is often written as Q:

Decay energy is usually quoted in terms of the energy units MeV (million electronvolts) or keV (thousand electronvolts).

Types of radioactive decay include

The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E. If A is the radioactive activity, i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is:

or

or


Example: 60Co decays into 60Ni. The mass difference Δm is 0.003u. The radiated energy is approximately 2.8 MeV. The molar weight is 59.93. The half life T of 5.27 year corresponds to the activity A = N * [ ln(2) / T ], where N is the number of atoms per mol, and T is the half-life. Taking care of the units the radiation power for 60Co is 17.9 W/g

Radiation power in W/g for several isotopes:

60Co: 17.9
238Pu: 0.57
137Cs: 0.6
241Am: 0.1
210Po: 140 (T=136 d)
90Sr: 0.9
226Ra: 0.02

See also

References

Radioactivity Radionuclides Radiation by Joseph Magill and Jean Galy, Springer Verlag, 2005