Nu Phoenicis
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Phoenix |
Right ascension | 01h 15m 11.12150s[1] |
Declination | –45° 31′ 53.9954″[1] |
Apparent magnitude (V) | 4.95[2] |
Characteristics | |
Spectral type | F9 V Fe+0.4[3] |
U−B color index | +0.09[2] |
B−V color index | +0.57[2] |
Astrometry | |
Radial velocity (Rv) | +11.82 ± 0.15[4] km/s |
Proper motion (μ) | RA: 664.28[4] mas/yr Dec.: 179.06[4] mas/yr |
Parallax (π) | 65.8894 ± 0.1803 mas[4] |
Distance | 49.5 ± 0.1 ly (15.18 ± 0.04 pc) |
Absolute magnitude (MV) | 4.07[5] |
Details[5] | |
Mass | 1.17 M☉ |
Radius | 1.26 ± 0.04 R☉ |
Luminosity | 2.0 ± 0.1 L☉ |
Surface gravity (log g) | 4.31 ± 0.10 cgs |
Temperature | 6,066 ± 70 K |
Metallicity [Fe/H] | +0.16 ± 0.06 dex |
Rotational velocity (v sin i) | 3.7 ± 0.5 km/s |
Age | 4.2[6] Gyr |
Other designations | |
Database references | |
SIMBAD | data |
Nu Phoenicis is a F-type main-sequence star in the southern constellation of Phoenix. It is visible to the naked eye with an apparent visual magnitude of 4.95.[2] This is a solar analogue, meaning its observed properties appear similar to the Sun, although it is somewhat more massive. At an estimated distance of around 49.5 light years,[4] this star is located relatively near the Sun.
Based on observations of excess infrared radiation from this star, it may possess a dust ring that extends outward several AU from an inner edge starting at 10 AU.[8]
Properties
This is an F-type main-sequence star with a spectral type of F9V Fe+0.4,[3] indicating it is similar to the Sun but somewhat hotter and more luminous. The notation 'Fe+0.4' indicates strong iron absorption lines; the star is indeed metal-rich, with an iron abundance 45% greater than the Sun's. Nu Phoenicis has an estimated mass of 1.17 times the solar mass and a radius of 1.26 times the solar radius. It is shining with about double the solar luminosity at an effective temperature of 6,070 K.[5]
Nu Phoenicis has a projected rotational velocity of 3.7 km/s,[5] and a low chromospheric activity index (log R′HK = −4.95).[9] These values indicate that the star is not particularly young and has an age of a few billion years; empirical calibrations estimate from the rotational velocity an age of 2.4 billion years, and from the activity index an age of 5.67 billion years.[9] Similarly, stellar evolution models estimate an age between 1 and 6 billion years, with a more probable value of 4.2 billion years.[6]
Nu Phoenicis has no known companions, and is considered to be a single star.[5] As a bright star similar to the Sun, it has been targeted in a number of studies searching for planets with the radial velocity method, but no detection has been made. High-precision observations with the HARPS spectrograph show that the radial velocity of the star has no significant variability, and is constant to 2.67 m/s, a value similar to the estimated jitter level of 2.48 m/s.[10] The star has also been included in the observations of the Anglo-Australian Planet Search, which did not find Jupiter-analogs with periods up to 6,000 days.[11]
Nu Phoenicis emits a significant amount of infrared excess, in comparison to the expected emission from the star's photosphere, indicating it has a circunstellar debris disk that is warmed by the star and emits thermal radiation.[8] The excess has been detected in long wavelenghts, between 30[8] and 100 μm,[12] indicating relatively cold dust many astronomical units away from the star. Modeling the emission as a black body, the disk has an estimated temperature of 96 K and a radius of 12 AU, contributing to 0.00024% of the system's luminosity.[12]
See also
References
- ^ a b van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics, 474 (2): 653–664, arXiv:0708.1752, Bibcode:2007A&A...474..653V, doi:10.1051/0004-6361:20078357.
- ^ a b c d Mermilliod, J.-C. (1986), "Compilation of Eggen's UBV data, transformed to UBV (unpublished)", Catalogue of Eggen's UBV Data. SIMBAD: 0, Bibcode:1986EgUBV........0M.
- ^ a b Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal, 132 (1): 161–170, arXiv:astro-ph/0603770, Bibcode:2006AJ....132..161G, doi:10.1086/504637.
- ^ a b c d e Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051.
- ^ a b c d e Fuhrmann, K.; Chini, R.; Kaderhandt, L.; Chen, Z. (2017). "Multiplicity among Solar-type Stars". The Astrophysical Journal. 836 (1): 139. Bibcode:2017ApJ...836..139F. doi:10.3847/1538-4357/836/1/139.
- ^ a b Casagrande, L.; et al. (June 2011), "New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s). Improved astrophysical parameters for the Geneva-Copenhagen Survey", Astronomy and Astrophysics, 530: A138, arXiv:1103.4651, Bibcode:2011A&A...530A.138C, doi:10.1051/0004-6361/201016276.
- ^ "nu. Phe -- High proper-motion Star", SIMBAD Astronomical Database, Centre de Données astronomiques de Strasbourg, retrieved 2015-12-22.
- ^ a b c Beichman, C. A.; Tanner, A.; Bryden, G.; Stapelfeldt, K. R.; et al. (2006). "IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs". Astrophysical Journal. 639 (2): 1166–1176. arXiv:astro-ph/0601467. Bibcode:2006ApJ...639.1166B. doi:10.1086/499424.
- ^ a b Vican, Laura (June 2012), "Age Determination for 346 Nearby Stars in the Herschel DEBRIS Survey", The Astronomical Journal, 143 (6): 135, arXiv:1203.1966, Bibcode:2012AJ....143..135V, doi:10.1088/0004-6256/143/6/135.
- ^ Zechmeister, M.; et al. (2013). "The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars". Astronomy & Astrophysics. 592: A78. arXiv:1211.7263. Bibcode:2013A&A...552A..78Z. doi:10.1051/0004-6361/201116551.
- ^ Wittenmyer, Robert A.; Butler, R. P.; Tinney, C. G.; Horner, Jonathan; Carter, B. D.; Wright, D. J.; Jones, H. R. A.; Bailey, J.; O'Toole, Simon J. (2016). "The Anglo-Australian Planet Search XXIV: The Frequency of Jupiter Analogs". The Astrophysical Journal. 819 (1): 28. arXiv:1601.05465. Bibcode:2016ApJ...819...28W. doi:10.3847/0004-637x/819/1/28.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b Montesinos, B.; et al. (September 2016), "Incidence of debris discs around FGK stars in the solar neighbourhood", Astronomy & Astrophysics, 593: 31, arXiv:1605.05837, Bibcode:2016A&A...593A..51M, doi:10.1051/0004-6361/201628329, A51.
External links
- "HD 7570 -- High proper-motion Star". Simbad. Retrieved 2006-08-01.
- "4C00106". ARICNS. Archived from the original on January 18, 2005. Retrieved 2006-08-01.