Jump to content

L(R)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Citation bot (talk | contribs) at 10:43, 7 September 2021 (Add: doi-access. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 2/1250). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In set theory, L(R) (pronounced L of R) is the smallest transitive inner model of ZF containing all the ordinals and all the reals.

Construction

It can be constructed in a manner analogous to the construction of L (that is, Gödel's constructible universe), by adding in all the reals at the start, and then iterating the definable powerset operation through all the ordinals.

Assumptions

In general, the study of L(R) assumes a wide array of large cardinal axioms, since without these axioms one cannot show even that L(R) is distinct from L. But given that sufficient large cardinals exist, L(R) does not satisfy the axiom of choice, but rather the axiom of determinacy. However, L(R) will still satisfy the axiom of dependent choice, given only that the von Neumann universe, V, also satisfies that axiom.

Results

Given the assumptions above, some additional results of the theory are:

References

  • Woodin, W. Hugh (1988). "Supercompact cardinals, sets of reals, and weakly homogeneous trees". Proceedings of the National Academy of Sciences of the United States of America. 85 (18): 6587–6591. doi:10.1073/pnas.85.18.6587. PMC 282022. PMID 16593979.