Jump to content

Small icosihemidodecacron

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by OlliverWithDoubleL (talk | contribs) at 08:55, 1 June 2022. The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
Small icosihemidodecacron
Type Star polyhedron
Face
Elements F = 30, E = 60
V = 26 (χ = −4)
Symmetry group Ih, [5,3], *532
Index references DU49
dual polyhedron Small icosihemidodecahedron

In geometry, the small icosihemidodecacron is the dual of the small icosihemidodecahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the small dodecahemidodecacron.

Since the hemipolyhedra have faces passing through the center, the dual figures have corresponding vertices at infinity; properly, on the real projective plane at infinity.[1] In Magnus Wenninger's Dual Models, they are represented with intersecting prisms, each extending in both directions to the same vertex at infinity, in order to maintain symmetry. In practice the model prisms are cut off at a certain point that is convenient for the maker. Wenninger suggested these figures are members of a new class of stellation figures, called stellation to infinity. However, he also suggested that strictly speaking they are not polyhedra because their construction does not conform to the usual definitions.

The small icosihemidodecahedron has six decagonal faces passing through the model center, the small icosihemidodecacron has six vertices at infinity.

See also

[edit]
  • Hemi-dodecahedron - The six vertices at infinity correspond directionally to the six vertices of this abstract polyhedron.

References

[edit]
  • Wenninger, Magnus (2003) [1983], Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208 (Page 101, Duals of the (nine) hemipolyhedra)
[edit]