Jump to content

Sum rule in quantum mechanics

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Citation bot (talk | contribs) at 01:29, 4 October 2022 (Add: bibcode. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 580/2135). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In quantum mechanics, a sum rule is a formula for transitions between energy levels, in which the sum of the transition strengths is expressed in a simple form. Sum rules are used to describe the properties of many physical systems, including solids, atoms, atomic nuclei, and nuclear constituents such as protons and neutrons.

The sum rules are derived from general principles, and are useful in situations where the behavior of individual energy levels is too complex to be described by a precise quantum-mechanical theory. In general, sum rules are derived by using Heisenberg's quantum-mechanical algebra to construct operator equalities, which are then applied to the particles or energy levels of a system.

Derivation of sum rules[1]

[edit]

Assume that the Hamiltonian has a complete set of eigenfunctions with eigenvalues :

For the Hermitian operator we define the repeated commutator iteratively by:

The operator is Hermitian since is defined to be Hermitian. The operator is anti-Hermitian:

By induction one finds:

and also

For a Hermitian operator we have

Using this relation we derive:

The result can be written as

For this gives:

See also

[edit]

References

[edit]
  1. ^ Wang, Sanwu (1999-07-01). "Generalization of the Thomas-Reiche-Kuhn and the Bethe sum rules". Physical Review A. 60 (1). American Physical Society (APS): 262–266. Bibcode:1999PhRvA..60..262W. doi:10.1103/physreva.60.262. ISSN 1050-2947.