Jump to content

Partition of an interval

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2d37 (talk | contribs) at 05:49, 18 July 2023 (Promote Partition of a set from "See also" to a dab hatnote (WP:DUMMY edit to correct Special:Diff/1165911459's flubbed edit summary)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red.

In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x0, x1, x2, …, xn of real numbers such that

a = x0 < x1 < x2 < … < xn = b.

In other terms, a partition of a compact interval I is a strictly increasing sequence of numbers (belonging to the interval I itself) starting from the initial point of I and arriving at the final point of I.

Every interval of the form [xi, xi + 1] is referred to as a subinterval of the partition x.

Refinement of a partition

Another partition Q of the given interval [a, b] is defined as a refinement of the partition P, if Q contains all the points of P and possibly some other points as well; the partition Q is said to be “finer” than P. Given two partitions, P and Q, one can always form their common refinement, denoted P ∨ Q, which consists of all the points of P and Q, in increasing order.[1]

Norm of a partition

The norm (or mesh) of the partition

x0 < x1 < x2 < … < xn

is the length of the longest of these subintervals[2][3]

max{|xixi−1| : i = 1, … , n }.

Applications

Partitions are used in the theory of the Riemann integral, the Riemann–Stieltjes integral and the regulated integral. Specifically, as finer partitions of a given interval are considered, their mesh approaches zero and the Riemann sum based on a given partition approaches the Riemann integral.[4]

Tagged partitions

A tagged partition[5] is a partition of a given interval together with a finite sequence of numbers t0, …, tn − 1 subject to the conditions that for each i,

xitixi + 1.

In other words, a tagged partition is a partition together with a distinguished point of every subinterval: its mesh is defined in the same way as for an ordinary partition. It is possible to define a partial order on the set of all tagged partitions by saying that one tagged partition is bigger than another if the bigger one is a refinement of the smaller one.[citation needed]

Suppose that x0, …, xn together with t0, …, tn − 1 is a tagged partition of [a, b], and that y0, …, ym together with s0, …, sm − 1 is another tagged partition of [a, b]. We say that y0, …, ym together with s0, …, sm − 1 is a refinement of a tagged partition x0, …, xn together with t0, …, tn − 1 if for each integer i with 0 ≤ in, there is an integer r(i) such that xi = yr(i) and such that ti = sj for some j with r(i) ≤ jr(i + 1) − 1. Said more simply, a refinement of a tagged partition takes the starting partition and adds more tags, but does not take any away.

See also

References

  1. ^ Brannan, D. A. (2006). A First Course in Mathematical Analysis. Cambridge University Press. p. 262. ISBN 9781139458955.
  2. ^ Hijab, Omar (2011). Introduction to Calculus and Classical Analysis. Springer. p. 60. ISBN 9781441994882.
  3. ^ Zorich, Vladimir A. (2004). Mathematical Analysis II. Springer. p. 108. ISBN 9783540406334.
  4. ^ Ghorpade, Sudhir; Limaye, Balmohan (2006). A Course in Calculus and Real Analysis. Springer. p. 213. ISBN 9780387364254.
  5. ^ Dudley, Richard M.; Norvaiša, Rimas (2010). Concrete Functional Calculus. Springer. p. 2. ISBN 9781441969507.

Further reading