Jump to content

Smooth coarea formula

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Fadesga (talk | contribs) at 00:19, 12 August 2023 (References). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In Riemannian geometry, the smooth coarea formulas relate integrals over the domain of certain mappings with integrals over their codomains.

Let be smooth Riemannian manifolds of respective dimensions . Let be a smooth surjection such that the pushforward (differential) of is surjective almost everywhere. Let a measurable function. Then, the following two equalities hold:

where is the normal Jacobian of , i.e. the determinant of the derivative restricted to the orthogonal complement of its kernel.

Note that from Sard's lemma almost every point is a regular point of and hence the set is a Riemannian submanifold of , so the integrals in the right-hand side of the formulas above make sense.

References

[edit]
  • Chavel, Isaac (2006) Riemannian Geometry. A Modern Introduction. Second Edition.