Jump to content

Fungal genome

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 22:05, 18 August 2023 (Open access bot: doi updated in citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Fungal genomes are among the smallest genomes of eukaryotes. The sizes of fungal genomes range from less than 10 Mbp to hundreds of Mbp.[1][2] The average genome size is approximately 37 Mbp in Ascomycota, 47 Mbp in Basidiomycota and 75 Mbp in Oomycota.[1] The sizes and gene numbers of the smallest genomes of free-living fungi such as those of Wallemia ichthyophaga, Wallemia mellicola or Malassezia restricta are comparable to bacterial genomes.[3][4][5] The genome of the extensively researched yeast Saccharomyces cerevisiae contains approximately 12 Mbp and was the first completely sequenced eukaryotic genome.[6] Due to their compact size fungal genomes can be sequenced with less resources than most other eukaryotic genomes and are thus important models for research.[7] Some fungi exist as stable haploid, diploid, or polyploid cells, others change ploidy in response to environmental conditions and aneuploidy is also observed in novel environments or during periods of stress.[8]

Genome comparisons

The comparison of fungal genomes has been used to study the evolution of fungi, to improve the resolution of the phylogeny of fungal species, and to determine the time of the emergence and changes in species traits and lifestyles, such as the evolution symbiotic or pathogenic interactions, and the evolution of different morphologies.[2] Major chromosomal rearrangements in fungi were found to be more frequent than in other eukaryotes, thus macrosynteny in fungi is rare.[9] However, in filamentous ascomycetes genes were found to be conserved within homologous chromosomes, but with randomized orders and orientations, a phenomenon named mesosynteny.[9] Mesosynteny was also observed in the basidiomycetous genus Rhodotorula.[10] A comparison of more than 1000 Saccharomyces cerevisiae genomes was used to identify the geographical origin and several domestication events of the species as well as map genomic variants to the species-wide phenotypic landscape of the yeast.[11] Comparisons of several genomes of the same species led to discovery of high levels of recombination in species that were previously considered asexual.[12][13][14] In the extremely halotolerant black yeast Hortaea werneckii it was discovered that while the species is clonal, both haploid and diploid strains can be found in nature and the diploid strains are highly heterozygous hybrids, which appear to be stable over large time scales and geographical distances.[15]

Use in taxonomy

While genomic distance measures such as the average nucleotide identity (ANI) are used routinely to distinguish bacterial species, the use of fungal genomes in taxonomy is currently rare. Genome sequences can be used to expand the number of genes used in phylogenetic analyses, but many publicly available genomes lack gene annotations and popular rDNA markers are typically missing from genomic sequences or are incorrectly assembled.[16] Suggested measures of overall genome related indices in yeast include ANI, digital DNA-DNA hybridisation (dDDH) and Kr distance.[17] Genomic collinearity was suggested as a possible source of markers to resolve species complexes.[18] Pairwise Kr genomic distances and average nucleotide identity were used in the description of new species within the genera Aureobasidium and Tilletia.[19][20] Alternatively, quick and simple to calculate similarity measures based on MinHash also appear to produce usefully accurate estimates of distance between genomes. For example, a fixed threshold genomic distance calculated tools such as Mash and Dashing was able to determine whether two genomes belong to the same or to different species with over 90% accuracy, indicating that simple measures of genomic distance might be useful to delineate fungal species and still largely support the existing fungal taxonomy.[21]

References

  1. ^ a b Mohanta TK, Bae H (2015). "The diversity of fungal genome". Biological Procedures Online. 17: 8. doi:10.1186/s12575-015-0020-z. PMC 4392786. PMID 25866485.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  2. ^ a b Stajich JE (July 2017). "Fungal Genomes and Insights into the Evolution of the Kingdom". Microbiology Spectrum. 5 (4): 619–633. doi:10.1128/microbiolspec.FUNK-0055-2016. ISBN 9781555819576. PMC 6078396. PMID 28820125.
  3. ^ Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (September 2013). "Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent". BMC Genomics. 14: 617. doi:10.1186/1471-2164-14-617. PMC 3849046. PMID 24034603.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Padamsee M, Kumar TK, Riley R, Binder M, Boyd A, Calvo AM, et al. (March 2012). "The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction". Fungal Genetics and Biology. 49 (3): 217–26. doi:10.1016/j.fgb.2012.01.007. PMID 22326418.
  5. ^ Morand SC, Bertignac M, Iltis A, Kolder IC, Pirovano W, Jourdain R, Clavaud C (February 2019). "Malassezia restricta CBS 7877, an Opportunist Pathogen Involved in Dandruff and Seborrheic Dermatitis". Microbiology Resource Announcements. 8 (6). doi:10.1128/MRA.01543-18. PMC 6368656. PMID 30746521.
  6. ^ Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. (October 1996). "Life with 6000 genes". Science. 274 (5287): 546, 563–7. Bibcode:1996Sci...274..546G. doi:10.1126/science.274.5287.546. PMID 8849441. S2CID 16763139.
  7. ^ Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (December 2005). "Genomics of the fungal kingdom: insights into eukaryotic biology". Genome Research. 15 (12): 1620–31. doi:10.1101/gr.3767105. PMID 16339359.
  8. ^ Todd RT, Forche A, Selmecki A (July 2017). "Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution". Microbiology Spectrum. 5 (4): 599–618. doi:10.1128/microbiolspec.FUNK-0051-2016. ISBN 9781555819576. PMC 5656283. PMID 28752816.
  9. ^ a b Hane JK, Rouxel T, Howlett BJ, Kema GH, Goodwin SB, Oliver RP (2011-05-24). "A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi". Genome Biology. 12 (5): R45. doi:10.1186/gb-2011-12-5-r45. PMC 3219968. PMID 21605470.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  10. ^ Tkavc R, Matrosova VY, Grichenko OE, Gostinčar C, Volpe RP, Klimenkova P, et al. (2018). "Rhodotorula taiwanensis MD1149". Frontiers in Microbiology. 8: 2528. doi:10.3389/fmicb.2017.02528. PMC 5766836. PMID 29375494.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D, Bergström A, et al. (April 2018). "Genome evolution across 1,011 Saccharomyces cerevisiae isolates". Nature. 556 (7701): 339–344. Bibcode:2018Natur.556..339P. doi:10.1038/s41586-018-0030-5. PMC 6784862. PMID 29643504.
  12. ^ Gostinčar C, Turk M, Zajc J, Gunde-Cimerman N (October 2019). "Fifty Aureobasidium pullulans genomes reveal a recombining polyextremotolerant generalist". Environmental Microbiology. 21 (10): 3638–3652. doi:10.1111/1462-2920.14693. PMC 6852026. PMID 31112354.
  13. ^ Gostinčar C, Sun X, Zajc J, Fang C, Hou Y, Luo Y, et al. (2019-09-04). "Wallemia ichthyophaga". Frontiers in Microbiology. 10: 2019. doi:10.3389/fmicb.2019.02019. PMC 6738226. PMID 31551960.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  14. ^ Sun X, Gostinčar C, Fang C, Zajc J, Hou Y, Song Z, Gunde-Cimerman N (June 2019). "Wallemia mellicola". Genes. 10 (6): 427. doi:10.3390/genes10060427. PMC 6628117. PMID 31167502.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  15. ^ Gostinčar C, Stajich JE, Zupančič J, Zalar P, Gunde-Cimerman N (May 2018). "Genomic evidence for intraspecific hybridization in a clonal and extremely halotolerant yeast". BMC Genomics. 19 (1): 364. doi:10.1186/s12864-018-4751-5. PMC 5952469. PMID 29764372.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  16. ^ Robbertse B, Strope PK, Chaverri P, Gazis R, Ciufo S, Domrachev M, Schoch CL (January 2017). "Improving taxonomic accuracy for fungi in public sequence databases: applying 'one name one species' in well-defined genera with Trichoderma/Hypocrea as a test case". Database. 2017. doi:10.1093/database/bax072. PMC 5641268. PMID 29220466.
  17. ^ Libkind, D.; Čadež, N.; Opulente, D. A.; Langdon, Q. K.; Rosa, C. A.; Sampaio, J. P.; Gonçalves, P.; Hittinger, C. T.; Lachance, M. A. (2020-09-01). "Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences". FEMS Yeast Research. 20 (6). doi:10.1093/femsyr/foaa042. ISSN 1567-1364. PMID 32710773.
  18. ^ Magain N, Miadlikowska J, Mueller O, Gajdeczka M, Truong C, Salamov AA, et al. (December 2017). "Conserved genomic collinearity as a source of broadly applicable, fast evolving, markers to resolve species complexes: A case study using the lichen-forming genus Peltigera section Polydactylon". Molecular Phylogenetics and Evolution. 117: 10–29. doi:10.1016/j.ympev.2017.08.013. PMID 28860010.
  19. ^ Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, et al. (July 2014). "Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species". BMC Genomics. 15 (1): 549. doi:10.1186/1471-2164-15-549. PMC 4227064. PMID 24984952.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  20. ^ Nguyen HD, Sultana T, Kesanakurti P, Hambleton S (2019-07-24). "Tilletia species to identify candidate genes for the detection of regulated species infecting wheat". IMA Fungus. 10 (1): 11. doi:10.1186/s43008-019-0011-9. PMC 7184893. PMID 32355611.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ Gostinčar C (October 2020). "Towards Genomic Criteria for Delineating Fungal Species". Journal of Fungi. 6 (4): 246. doi:10.3390/jof6040246. PMC 7711752. PMID 33114441.