Jump to content

Chinese hypothesis

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bubba73 (talk | contribs) at 20:12, 27 October 2023 (Changing short description from "the false conjecture that a positive integer 𝑛 is prime iff 𝑛 divides 2ⁿ−2" to "False conjecture of a test for prime numbers"). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In number theory, the Chinese hypothesis is a disproven conjecture stating that an integer n is prime if and only if it satisfies the condition that is divisible by n—in other words, that an integer n is prime if and only if . It is true that if n is prime, then (this is a special case of Fermat's little theorem), however the converse (if then n is prime) is false, and therefore the hypothesis as a whole is false. The smallest counterexample is n = 341 = 11×31. Composite numbers n for which is divisible by n are called Poulet numbers. They are a special class of Fermat pseudoprimes.

History

Once, and sometimes still, mistakenly thought to be of ancient Chinese origin, the Chinese hypothesis actually originates in the mid-19th century from the work of Qing dynasty mathematician Li Shanlan (1811–1882).[1] He was later made aware his statement was incorrect and removed it from his subsequent work but it was not enough to prevent the false proposition from appearing elsewhere under his name;[1] a later mistranslation in the 1898 work of Jeans dated the conjecture to Confucian times and gave birth to the ancient origin myth.[1][2]

References

  1. ^ a b c Ribenboim, Paulo (2006). The Little Book of Bigger Primes. Springer Science & Business Media. pp. 88–89. ISBN 9780387218205.
  2. ^ Needham, Joseph (1959). Science and Civilisation in China. Vol. 3: Mathematics and the Sciences of the Heavens and the Earth. In collaboration with Wang Ling. Cambridge, England: Cambridge University Press. p. 54. (all of footnote d)

Bibliography