Jump to content

Volume expander

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by RudolfoMD (talk | contribs) at 00:57, 7 January 2024 (Physiology). The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

A volume expander is a type of intravenous therapy that has the function of providing volume for the circulatory system. It may be used for fluid replacement or during surgery to prevent nausea and vomiting after surgery.[1]

Physiology

[edit]

When blood is lost, the greatest immediate need is to stop further blood loss. The second greatest need is replacing the lost volume. This way remaining red blood cells can still oxygenate body tissue. Normal human blood has a significant excess oxygen transport capability, only used in cases of great physical exertion. Provided blood volume is maintained by volume expanders, a rested patient can safely tolerate very low hemoglobin levels, less than 1/3 that of a healthy person.

The body detects the lower hemoglobin level, and compensatory mechanisms start up. The heart pumps more blood with each beat. Since the lost blood was replaced with a suitable fluid, the now diluted blood flows more easily, even in the small vessels. As a result of chemical changes, more oxygen is released to the tissues. These adaptations are so effective that if only half of the red blood cells remain, oxygen delivery may still be about 75 percent of normal. A patient at rest uses only 25 percent of the oxygen available in their blood. In extreme cases, patients have survived with a hemoglobin level of 2 g/dl, about 1/7 the normal, although levels this low are very dangerous.

With enough blood loss, ultimately red blood cell levels drop too low for adequate tissue oxygenation, even if volume expanders maintain circulatory volume. In these situations, the only alternatives are blood transfusions, packed red blood cells, or oxygen therapeutics (if available). However, in some circumstances, hyperbaric oxygen therapy can maintain adequate tissue oxygenation even if red blood cell levels are below normal life-sustaining levels.

Types

[edit]

There are two main types of volume expanders: crystalloids and colloids. Crystalloids are aqueous solutions of mineral salts or other water-soluble molecules. Colloids contain larger insoluble molecules, such as gelatin; blood itself is a colloid. There is no evidence that colloids are better than crystalloids in those who have had trauma, burns, or surgery. Colloids are more expensive than crystalloids. As such, colloids are not recommended for volume expansion in these settings.[2]

Crystalloids

[edit]

The most commonly used crystalloid fluid is normal saline, a solution of sodium chloride at 0.9% concentration, which is close to the concentration in the blood (isotonic).[3] Ringer's lactate or Ringer's acetate is another isotonic solution often used for large-volume fluid replacement. The choice of fluids may also depend on the chemical properties of the medications being given.[citation needed]

Normal saline

[edit]

Normal saline (NS) is the commonly used term for a solution of 0.9% w/v of NaCl, about 300 mOsm/L.[4] Less commonly, this solution is referred to as physiological saline or isotonic saline, neither of which is technically accurate. NS is used frequently in intravenous drips (IVs) for patients who cannot take fluids orally and have developed or are in danger of developing dehydration or hypovolemia. NS is typically the first fluid used when hypovolemia is severe enough to threaten the adequacy of blood circulation, and has long been believed to be the safest fluid to give quickly in large volumes. However, it is now known that rapid infusion of NS can cause metabolic acidosis.[5]

Ringer's solution

[edit]

Lactated Ringer's solution contains 28 mmol/L lactate, 4 mmol/L K+ and 1.5 mmol/L Ca2+. It is very similar – though not identical – to Hartmann's Solution, the ionic concentrations of which differ slightly.[citation needed] Ringer's lactate contains calcium, which may combine with citrate (that is used as a preservative in some blood products) and form a precipitate; therefore, it is not to be used as a diluent in blood transfusions.[6]

1/3 NS 2/3D5

[edit]

2/3 1/3 is no longer recommended as a maintenance intravenous fluid in children as it is hypotonic and isotonic fluids are preferred.[7]

Glucose (dextrose)

[edit]

Intravenous sugar solutions, such as those containing glucose (also called dextrose), have the advantage of providing some energy, and may thereby provide the entire or part of the energy component of parenteral nutrition.

Types of glucose/dextrose include:

  • D5W (5% dextrose in water), which consists of 278 mmol/L dextrose
  • D5NS (5% dextrose in normal saline), which, in addition, contains normal saline.

Plasma-lyte

[edit]

Plasma-Lyte A[8] and Plasma-Lyte 148[9] are buffered crystalloid solutions[8][10] that may be infused intravenously,[9] or used in conjunction with blood products.[8]

Comparison table

[edit]
Composition of common crystalloid solutions
Solution Other Name [Na+](mmol/L) [Cl](mmol/L) [Glucose](mmol/L) [Glucose](mg/dl)
D5W 5% Dextrose 0 0 278 5000
2/3 D5W & 1/3 NS 3.3% Dextrose / 0.3% saline 51 51 185 3333
Half-normal saline 0.45% NaCl 77 77 0 0
Normal saline 0.9% NaCl 154 154 0 0
Ringer's lactate Lactated Ringer 130 109 0 0
D5NS 5% Dextrose, Normal Saline 154 154 278 5000
Effect of adding one litre
Solution Change in ECF Change in ICF
D5W 333 mL 667 mL
2/3 D5W & 1/3 NS 556 mL 444 mL
Half-normal saline 667 mL 333 mL
Normal saline 1000 mL 0 mL
Ringer's lactate 900 mL 100 mL

Colloids

[edit]

Colloids preserve a high colloid osmotic pressure in the blood, while, on the other hand, this parameter is decreased by crystalloids due to hemodilution.[11] Therefore, they should theoretically preferentially increase the intravascular volume, whereas crystalloids also increase the interstitial volume and intracellular volume. However, there is no evidence to support that this results in less mortality than crystalloids.[11] Another difference is that crystalloids generally are much cheaper than colloids.[11] Common colloids used in the medical context include albumin and fresh frozen plasma.[citation needed]

Hydroxyethyl starch

[edit]

Hydroxyethyl starch (HES/HAES, common trade names: Hespan, Voluven) is controversial. Its use in those who are very ill is associated with an increased risk of death and kidney problems. Therefore, HES/HAES is not recommended in people with known inflammatory conditions such as renal impairment.[2][12]

Gelofusine

[edit]

Gelofusine is a colloid volume expander which may be used as a blood plasma replacement when a significant amount of blood is lost due to extreme hemorrhagia, trauma, dehydration, or a similar event. It is an intravenous colloid that behaves much like blood filled with albumins. As a result, it causes an increase in blood volume, blood flow, cardiac output, and oxygen transportation.[citation needed]

References

[edit]
  1. ^ Jewer, James K.; Wong, Michael J.; Bird, Sally J.; Habib, Ashraf S.; Parker, Robin; George, Ronald B. (2019-03-29). "Supplemental perioperative intravenous crystalloids for postoperative nausea and vomiting". The Cochrane Database of Systematic Reviews. 3 (4): CD012212. doi:10.1002/14651858.CD012212.pub2. ISSN 1469-493X. PMC 6440702. PMID 30925195.
  2. ^ a b Lewis, Sharon R.; Pritchard, Michael W.; Evans, David Jw; Butler, Andrew R.; Alderson, Phil; Smith, Andrew F.; Roberts, Ian (8 March 2018). "Colloids versus crystalloids for fluid resuscitation in critically ill people". The Cochrane Database of Systematic Reviews. 8 (8): CD000567. doi:10.1002/14651858.CD000567.pub7. ISSN 1469-493X. PMC 6513027. PMID 30073665.
  3. ^ "Choosing between colloids and crystalloids for IV infusion". Nursing Times. 20 November 2017. Retrieved 31 August 2018.
  4. ^ Note that in chemistry, a one normal of NaCl (see normality) is 0.5 molar (see molarity) NaCl assuming complete dissociation. Physiological dissociation is approximately 1.7 ions per mole, so one normal of NaCl is 1/1.7 = 0.588 molar. This is roughly 4 times more concentrated than medical "normal saline" of 0.154 molar.
  5. ^ Prough, DS; Bidani, A (May 1999). "Hyperchloremic Metabolic Acidosis Is a Predictable Consequence of Intraoperative Infusion of 0.9% Saline". Anesthesiology. 90 (5): 1247–1249. doi:10.1097/00000542-199905000-00003. PMID 10319767. Archived from the original on 6 May 2020.
  6. ^ Shashank Singh; Connor C. Kerndt; David Davis (2022). Ringer's Lactate. StatPearls. PMID 29763209.
  7. ^ Wang, J; Xu, E; Xiao, Y (Jan 2014). "Isotonic versus hypotonic maintenance IV fluids in hospitalized children: a meta-analysis". Pediatrics. 133 (1): 105–13. doi:10.1542/peds.2013-2041. PMID 24379232. S2CID 1191733.
  8. ^ a b c Neil Blumberg; Jill M Cholette; Anthony P Pietropaoli; Richard Phipps; Sherry L. Spinelli; Michael P. Eaton; Suzie A. Noronha; Jerard Seghatchian; Joanna M. Heal; Majed A. Refaai (2018). "0.9% NaCl (Normal Saline)—Perhaps not so normal after all?". Transfusion and Apheresus Science. 57 (1): 127–131. doi:10.1016/j.transci.2018.02.021. PMC 5899644. PMID 29523397.
  9. ^ a b ""Baxter PLASMA-LYTE 148 Injection (Multiple Electrolytes Injection, Type 1, USP)" (PDF). accessdata.fda.gov.
  10. ^ Laurence Weinberg; Neil Collins; Kiara Van Mourik; Chong Tan; Rinaldo Bellomo (Nov 4, 2016). "Plasma-Lyte 148: A clinical review". World Journal of Critical Care Medicine. 5 (4): 235–250. doi:10.5492/wjccm.v5.i4.235. PMC 5109922. PMID 27896148.
  11. ^ a b c Gregory S. Martin (2005-04-19). "An Update on Intravenous Fluids". Medscape.
  12. ^ Zarychanski, R; Abou-Setta, AM; Turgeon, AF; Houston, BL; McIntyre, L; Marshall, JC; Fergusson, DA (Feb 20, 2013). "Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis". JAMA: The Journal of the American Medical Association. 309 (7): 678–88. doi:10.1001/jama.2013.430. PMID 23423413.