Jump to content

Full Domain Hash

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Noloader (talk | contribs) at 19:12, 23 December 2017 ("boils down to" → "reduces to"). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In cryptography, the Full Domain Hash (FDH) is an RSA-based signature scheme that follows the hash-and-sign paradigm. It is provably secure (i.e., is existentially unforgeable under adaptive chosen-message attacks) in the random oracle model. FDH involves hashing a message using a function whose image size equals the size of the RSA modulus, and then raising the result to the secret RSA exponent.

Exact security of full domain hash

In the random oracle model, if RSA is -secure, then the full domain hash RSA signature scheme is -secure where,

.

For large this reduces to .

This means that if there exists an algorithm that can forge a new FDH signature that runs in time t, computes at most hashes, asks for at most signatures and succeeds with probability , then there must also exist an algorithm that breaks RSA with probability in time .

References

  • Jean-Sébastien Coron(AF): On the Exact Security of Full Domain Hash. CRYPTO 2000: pp. 229–235 (PDF)
  • Mihir Bellare, Phillip Rogaway: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. EUROCRYPT 1996: pp. 399–416 (PDF)