Jump to content

Modified Korteweg-De Vries equation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Michael Hardy (talk | contribs) at 18:48, 16 August 2018. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The unnormalized modified Korteweg–de Vries (KdV) equation is an integrable nonlinear partial differential equation[1]

where is an arbitrary (nonzero) constant. See also Korteweg–de Vries equation.

This is a special case of the Gardner equation.

References

  1. ^ Andrei D. Polyanin, Valentin F. Zaitsev, Handbook of Nonlinear Partial Differential Dquations, second edition p. 870 CRC PRESS
  • Graham W. Griffiths, William E. Shiesser Traveling Wave Analysis of Partial Differential Equations, Academy Press