Jump to content

Parabolic line

From Wikipedia, the free encyclopedia

This is the current revision of this page, as edited by Boleyn (talk | contribs) at 22:18, 3 January 2019. The present address (URL) is a permanent link to this version.

(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)

In differential geometry, a smooth surface in three dimensions has a parabolic point when the Gaussian curvature is zero. Typically such points lie on a curve called the parabolic line which separates the surface into regions of positive and negative Gaussian curvature.

Points on the parabolic line give rise to folds on the Gauss map: where a ridge crosses a parabolic line there is a cusp of the Gauss map.[1]

References

[edit]
  1. ^ Ian R. Porteous (2001) Geometric Differentiation, Chapter 11 Ridges and Ribs, pp 182–97, Cambridge University Press ISBN 0-521-00264-8 .