Loewe additivity

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Headbomb (talk | contribs) at 13:22, 11 February 2020 (7568331). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In toxicodynamics and pharmacodynamics, Loewe Additivity (or dose additivity) is one of several common reference models used for measuring the effects of drug combinations[1][2][3]

Definition

Let and be doses of compounds 1 and 2 producing in combination an effect . We denote by and the doses of compounds 1 and 2 required to produce effect alone (assuming this conditions uniquely define them, i.e. that the individual dose-response functions are bijective). quantifies the potency of compound 1 relatively to that of compound 2.

can be interpreted as the dose of compound 2 converted into the corresponding dose of compound 1 after accounting for difference in potency.

Loewe additivity is defined as the situation where or .

Geometrically, Loewe additivity is the situation where isoboles are segments joining the points and in the domain .

If we denote by , and the dose-response functions of compound 1, compound 2 and of the mixture respectively, then dose additivity holds when

Testing

The Loewe additivity equation provides a prediction of the dose combination eliciting a given effect. Departure from Loewe additivity can be assessed informally by comparing this prediction to observations. This approach is known in toxicology as the model deviation ratio [4]

This approach can be rooted in a more formal statistical method with the derivation of approximate p⁻values with Monte Carlo simulation, as implemented in the R package MDR.[5]

References

  1. ^ Greco, W.R.; Bravo, G.; Parsons, J. (1995). "The Search for Synergy: A Critical Review from a Response Surface Perspective". Pharmacol. Rev. 47 (2): 331–385. PMID 7568331.
  2. ^ Loewe, S. (1926). "Effect of combinations: mathematical basis of problem". Arch. Exp. Pathol. Pharmakol. 114: 313–326. doi:10.1007/BF01952257.
  3. ^ Tang, J.; Wennerberg, J.K.; Aittokallio, T. (2015). "What Is Synergy? The Saariselkä Agreement Revisited". Frontiers in Pharmacology. 6: 181. doi:10.3389/fphar.2015.00181. PMC 4555011. PMID 26388771.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  4. ^ Belden, J. B.; Gilliom, R.; Lydy, M.J. (2007). "How well can we predict the toxicity of pesticide mixtures to aquatic life?". Integr. Environ. Assess. Manag. 3 (3): 364–72. doi:10.1002/ieam.5630030307. PMID 17695109.
  5. ^ "Github development repository for the R package MDR". 2020-01-20.