Jump to content

Szegő limit theorems

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jonesey95 (talk | contribs) at 01:01, 3 April 2020 (Fix Linter errors using AutoEd). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematical analysis, the Szegő limit theorems describe the asymptotic behaviour of the determinants of large Toeplitz matrices.[1][2][3] They were first proved by Gábor Szegő.

Notation

Let φ : TC be a complex function ("symbol") on the unit circle. Consider the n×n Toeplitz matrices Tn(φ), defined by

where

are the Fourier coefficients of φ.

First Szegő theorem

The first Szegő theorem[1][4] states that, if φ > 0 and φ ∈ L1(T), then

(1)

The right-hand side of (1) is the geometric mean of φ (well-defined by the arithmetic-geometric mean inequality).

Second Szegő theorem

Denote the right-hand side of (1) by G. The second (or strong) Szegő theorem[1][5] asserts that if, in addition, the derivative of φ is Hölder continuous of order α > 0, then

References

  1. ^ a b c Böttcher, Albrecht; Silbermann, Bernd (1990). "Toeplitz determinants". Analysis of Toeplitz operators. Berlin: Springer-Verlag. p. 525. ISBN 3-540-52147-X. MR 1071374.
  2. ^ Ehrhardt, T.; Silbermann, B. (2001) [1994], "Szegö_limit_theorems", Encyclopedia of Mathematics, EMS Press
  3. ^ Simon, Barry (2010). Szegő's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials. Princeton: Princeton University Press. ISBN 978-0-691-14704-8. MR 1071374.
  4. ^ Szegő, G. (1915). "Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion" (PDF). Math. Ann. 76 (4): 490–503. doi:10.1007/BF01458220.
  5. ^ Szegő, G. (1952). "On certain Hermitian forms associated with the Fourier series of a positive function". Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]: 228–238. MR 0051961.