Jump to content

Erysodienone

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Premeditated Chaos (talk | contribs) at 00:56, 12 May 2020 (de orphaned). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Erysodienone
Identifiers
3D model (JSmol)
  • COC1=C(C=C2CCN3CCC4=CC(=O)C(=C[C@@]43C2=C1)OC)O
Properties
C18H19NO4
Molar mass 313.353 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Erysodienone is a key precursor in the biosynthesis of many Erythrina-produced alkaloids.[1] Early work was done by Derek Barton and co-workers to illustrate the biosynthetic pathways towards erythrina alkaloids.[2][3][4] It was demonstrated that erysodienone could be synthesized from simple starting materials by a similar approach as its biosynthetic pathway, which led to the development of the biomimetic synthesis of erysodienone.[5]

Synthesis

The biosynthesis of erysodienone involves a key step of oxidative phenol coupling. Starting with S-norprotosinomenine precursor A, cyclization via oxidative phenol coupling forms intermediate B, which in turn can be rearranged to form intermediate C. Hydrogenation of C forms the diphenoquinone intermediate E. An intramolecular Michael addition reaction converts E to the final product, erysodienone.[6]

Proposed biosynthetic pathway of erysodienone

A biomimetic synthesis route for erysodienone was developed based on a similar oxidative phenol coupling mechanism. Barton and co-workers[2] found that treating bisphenolethylamine precursor F with oxidants such as K3Fe(CN)6 initiated oxidative phenol coupling to form the 9-membered ring structure in intermediate D that itself undergo a Michael addition to give erysodienone.[7]

Biomimetic synthesis of erysodienone

References

  1. ^ Rahman, Mohammed Zakiur; J Sultana, Shirin; Faruquee, Chowdhury; Ferdous, Faisol; Rahman, Mohammad; S Islam, Mohammad; Rashid, Mohammad A. (May 2007). "Phytochemical and Biological investigations of Erythrina variegata" (PDF). Saudi Pharmaceutical Journal. 15.
  2. ^ a b Barton, D. H. R.; Boar, R. B.; Widdowson, D. A. (January 1970). "Part XXI: The biosynthesis of the Erythrina alkaloids". Journal of the Chemical Society C: Organic. Phenol oxidation and biosynthesis (9): 1213–1218. doi:10.1039/J39700001213. ISSN 0022-4952.
  3. ^ Barton, Derek H. R.; Potter, Christopher J.; Widdowson, David A. (January 1974). "Part XXIII: On the benzyltetrahydroisoquinoline origins of the Erythrina alkaloids". Journal of the Chemical Society, Perkin Transactions 1. Phenol oxidation and biosynthesis. 0: 346–348. doi:10.1039/P19740000346. ISSN 1364-5463.
  4. ^ Barton, D. H. R.; James, R.; Kirby, G. W.; Turner, D. W.; Widdowson, D. A. (January 1968). "Part XVIII: The structure and biosynthesis of Erythrina alkaloids". Journal of the Chemical Society C: Organic. Phenol oxidation and biosynthesis: 1529–1537. doi:10.1039/J39680001529. ISSN 0022-4952.
  5. ^ Herbert, R. B. (1985). "The Biosynthesis of Isoquinoline Alkaloids". The Chemistry and Biology of Isoquinoline Alkaloids. Proceedings in Life Sciences. pp. 213–228. doi:10.1007/978-3-642-70128-3_14. ISBN 978-3-642-70130-6. ISSN 0172-6625.
  6. ^ Maier UH; Rödl W; Deus-Neumann B; Zenk MH (1999). "Biosynthesis of Erythrina alkaloids in Erythrina crista-galli". Phytochemistry. 52 (3): 373–82. doi:10.1016/s0031-9422(99)00230-7. PMID 10501023.
  7. ^ M. F. Grundon (1 January 1979). The Alkaloids. Royal Society of Chemistry. pp. 16–. ISBN 978-0-85186-660-4.

Further reading

  • Castedo, Luis; Dominguez, Domingo (January 1989). "Chapter 4: Dibenzazonine Alkaloids". In Arnold Brossi (ed.). The Alkaloids: Chemistry and Pharmacology. Vol. 35. Academic Press. pp. 177–214.
  • Chou, Chun Tzer; Swenton, John S. (October 1987). "A convergent strategy for synthesis of Erythrina alkaloids". Journal of the American Chemical Society. 109 (22): 6898–6899. doi:10.1021/ja00256a079. ISSN 0002-7863.