Jump to content

Caloric polynomial

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bender235 (talk | contribs) at 19:28, 29 May 2020 (External links: Replaced arXiv PDF link with more mobile-friendly abstract link, replaced: https://arxiv.org/pdf/ → https://arxiv.org/abs/). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In differential equations, the mth-degree caloric polynomial (or heat polynomial) is a "parabolically m-homogeneous" polynomial Pm(xt) that satisfies the heat equation

"Parabolically m-homogeneous" means

The polynomial is given by

It is unique up to a factor.

With t = −1, this polynomial reduces to the mth-degree Hermite polynomial in x.

References

  • Cannon, John Rozier (1984), The One-Dimensional Heat Equation, Encyclopedia of Mathematics and Its Applications, vol. 23 (1st ed.), Reading/Cambridge: Addison-Wesley Publishing Company/Cambridge University Press, pp. XXV+483, ISBN 978-0-521-30243-2, MR 0747979, Zbl 0567.35001. Contains an extensive bibliography on various topics related to the heat equation.