Jump to content

Q-matrix

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by I dream of horses (talk | contribs) at 06:51, 6 June 2020 (v2.02 - WP:WCW project (Whitespace characters after heading)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, a Q-matrix is a square matrix whose associated linear complementarity problem LCP(M,q) has a solution for every vector q.

Properties

  • M is a Q-matrix if there exists d > 0 such that LCP(M,0) and LCP(M,d) have a unique solution.[1][2]
  • Any P-matrix is a Q-matrix. Conversely, if a matrix is a Z-matrix and a Q-matrix, then it is also a P-matrix.[3]

See also

References

  1. ^ Karamardian, S. (1976). "An existence theorem for the complementarity problem". Journal of Optimization Theory and Applications. 19 (2): 227–232. doi:10.1007/BF00934094. ISSN 0022-3239.
  2. ^ Sivakumar, K. C.; Sushmitha, P.; Wendler, Megan (2020-05-17). "Karamardian Matrices: A Generalization of $Q$-Matrices". arXiv:2005.08171 [math].
  3. ^ Berman, Abraham. (1994). Nonnegative matrices in the mathematical sciences. Plemmons, Robert J. Philadelphia: Society for Industrial and Applied Mathematics. ISBN 0-89871-321-8. OCLC 31206205.