Numerical constants
This article gives some specific values of the Riemann zeta function , including values at integer arguments, and some series involving them.
The Riemann zeta function at 0 and 1
At zero , one has
ζ
(
0
)
=
B
1
−
=
−
B
1
+
=
−
1
2
{\displaystyle \zeta (0)={B_{1}^{-}}=-{B_{1}^{+}}=-{\tfrac {1}{2}}\!}
At 1 there is a pole , so ζ (1) is not finite but the left and right limits are:
lim
ε
→
0
±
ζ
(
1
+
ε
)
=
±
∞
{\displaystyle \lim _{\varepsilon \to 0^{\pm }}\zeta (1+\varepsilon )=\pm \infty }
Since it is a pole of first order, its principal value exists and is equal to the Euler–Mascheroni constant γ = 0.57721 56649+.
Positive integers
Even positive integers
For the even positive integers, one has the relationship to the Bernoulli numbers :
ζ
(
2
n
)
=
(
−
1
)
n
+
1
B
2
n
(
2
π
)
2
n
2
(
2
n
)
!
{\displaystyle \zeta (2n)=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}\!}
for
n
∈
N
{\displaystyle n\in \mathbb {N} }
. The first few values are given by:
ζ
(
2
)
=
1
+
1
2
2
+
1
3
2
+
⋯
=
π
2
6
=
1.6449
…
{\displaystyle \zeta (2)=1+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}=1.6449\dots \!}
(OEIS : A013661 )
(the demonstration of this equality is known as the Basel problem )
ζ
(
4
)
=
1
+
1
2
4
+
1
3
4
+
⋯
=
π
4
90
=
1.0823
…
{\displaystyle \zeta (4)=1+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}=1.0823\dots \!}
(OEIS : A013662 )
(the Stefan–Boltzmann law and Wien approximation in physics)
ζ
(
6
)
=
1
+
1
2
6
+
1
3
6
+
⋯
=
π
6
945
=
1.0173
…
{\displaystyle \zeta (6)=1+{\frac {1}{2^{6}}}+{\frac {1}{3^{6}}}+\cdots ={\frac {\pi ^{6}}{945}}=1.0173\dots \!}
(OEIS : A013664 )
ζ
(
8
)
=
1
+
1
2
8
+
1
3
8
+
⋯
=
π
8
9450
=
1.00407
…
{\displaystyle \zeta (8)=1+{\frac {1}{2^{8}}}+{\frac {1}{3^{8}}}+\cdots ={\frac {\pi ^{8}}{9450}}=1.00407\dots \!}
(OEIS : A013666 )
ζ
(
10
)
=
1
+
1
2
10
+
1
3
10
+
⋯
=
π
10
93555
=
1.000994
…
{\displaystyle \zeta (10)=1+{\frac {1}{2^{10}}}+{\frac {1}{3^{10}}}+\cdots ={\frac {\pi ^{10}}{93555}}=1.000994\dots \!}
(OEIS : A013668 )
ζ
(
12
)
=
1
+
1
2
12
+
1
3
12
+
⋯
=
691
π
12
638512875
=
1.000246
…
{\displaystyle \zeta (12)=1+{\frac {1}{2^{12}}}+{\frac {1}{3^{12}}}+\cdots ={\frac {691\pi ^{12}}{638512875}}=1.000246\dots \!}
(OEIS : A013670 )
ζ
(
14
)
=
1
+
1
2
14
+
1
3
14
+
⋯
=
2
π
14
18243225
=
1.0000612
…
{\displaystyle \zeta (14)=1+{\frac {1}{2^{14}}}+{\frac {1}{3^{14}}}+\cdots ={\frac {2\pi ^{14}}{18243225}}=1.0000612\dots \!}
(OEIS : A013672 ).
Taking the limit
n
→
∞
{\displaystyle n\rightarrow \infty }
, one obtains
ζ
(
∞
)
=
1
{\displaystyle \zeta (\infty )=1}
.
The relationship between zeta at the positive even integers and the Bernoulli numbers may be written as
A
n
ζ
(
2
n
)
=
B
n
π
2
n
{\displaystyle A_{n}\zeta (2n)=B_{n}\pi ^{2n}\,\!}
where
A
n
{\displaystyle A_{n}}
and
B
n
{\displaystyle B_{n}}
are integers for all even
n
{\displaystyle n}
. These are given by the integer sequences OEIS : A002432 and OEIS : A046988 , respectively, in OEIS . Some of these values are reproduced below:
coefficients
n
A
B
1
6
1
2
90
1
3
945
1
4
9450
1
5
93555
1
6
638512875
691
7
18243225
2
8
325641566250
3617
9
38979295480125
43867
10
1531329465290625
174611
11
13447856940643125
155366
12
201919571963756521875
236364091
13
11094481976030578125
1315862
14
564653660170076273671875
6785560294
15
5660878804669082674070015625
6892673020804
16
62490220571022341207266406250
7709321041217
17
12130454581433748587292890625
151628697551
If we let
η
n
=
B
n
/
A
n
{\displaystyle \eta _{n}=B_{n}/A_{n}}
be the coefficient of
π
2
n
{\displaystyle \pi ^{2n}}
as above,
ζ
(
2
n
)
=
∑
ℓ
=
1
∞
1
ℓ
2
n
=
η
n
π
2
n
{\displaystyle \zeta (2n)=\sum _{\ell =1}^{\infty }{\frac {1}{\ell ^{2n}}}=\eta _{n}\pi ^{2n}}
then we find recursively,
η
1
=
1
/
6
η
n
=
∑
ℓ
=
1
n
−
1
(
−
1
)
ℓ
−
1
η
n
−
ℓ
(
2
ℓ
+
1
)
!
+
(
−
1
)
n
+
1
n
(
2
n
+
1
)
!
{\displaystyle {\begin{aligned}\eta _{1}&=1/6\\\eta _{n}&=\sum _{\ell =1}^{n-1}(-1)^{\ell -1}{\frac {\eta _{n-\ell }}{(2\ell +1)!}}+(-1)^{n+1}{\frac {n}{(2n+1)!}}\end{aligned}}}
This recurrence relation may be derived from that for the Bernoulli numbers .
Also, there is another recurrence:
ζ
(
2
n
)
=
1
n
+
1
2
∑
k
=
1
n
−
1
ζ
(
2
k
)
ζ
(
2
n
−
2
k
)
for
n
>
1
{\displaystyle \zeta (2n)={\frac {1}{n+{\frac {1}{2}}}}\sum _{k=1}^{n-1}\zeta (2k)\zeta (2n-2k)\quad {\text{ for }}\quad n>1}
which can be proved, using that
d
d
x
cot
(
x
)
=
−
1
−
cot
2
(
x
)
{\displaystyle {\frac {d}{dx}}\cot(x)=-1-\cot ^{2}(x)}
The values of the zeta function at non-negative even integers have the generating function :
∑
n
=
0
∞
ζ
(
2
n
)
x
2
n
=
−
π
x
2
cot
(
π
x
)
=
−
1
2
+
π
2
6
x
2
+
π
4
90
x
4
+
π
6
945
x
6
+
⋯
{\displaystyle \sum _{n=0}^{\infty }\zeta (2n)x^{2n}=-{\frac {\pi x}{2}}\cot(\pi x)=-{\frac {1}{2}}+{\frac {\pi ^{2}}{6}}x^{2}+{\frac {\pi ^{4}}{90}}x^{4}+{\frac {\pi ^{6}}{945}}x^{6}+\cdots }
Since
lim
n
→
∞
ζ
(
2
n
)
=
1
{\displaystyle \lim _{n\rightarrow \infty }\zeta (2n)=1}
The formula also shows that for
n
∈
N
,
n
→
∞
{\displaystyle n\in \mathbb {N} ,n\rightarrow \infty }
,
|
B
2
n
|
∼
2
(
2
n
)
!
(
2
π
)
2
n
{\displaystyle \left|B_{2n}\right|\sim {\frac {2(2n)!}{(2\pi )^{2n}}}}
Odd positive integers
For the first few odd natural numbers one has
ζ
(
1
)
=
1
+
1
2
+
1
3
+
⋯
=
∞
{\displaystyle \zeta (1)=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots =\infty \!}
(the harmonic series );
ζ
(
3
)
=
1
+
1
2
3
+
1
3
3
+
⋯
=
1.20205
…
{\displaystyle \zeta (3)=1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots =1.20205\dots \!}
(OEIS : A02117 )
(Called Apéry's constant and has a role in the electron's gyromagnetic ratio)
ζ
(
5
)
=
1
+
1
2
5
+
1
3
5
+
⋯
=
1.03692
…
{\displaystyle \zeta (5)=1+{\frac {1}{2^{5}}}+{\frac {1}{3^{5}}}+\cdots =1.03692\dots \!}
(OEIS : A013663 )
(Appears in Planck's law )
ζ
(
7
)
=
1
+
1
2
7
+
1
3
7
+
⋯
=
1.00834
…
{\displaystyle \zeta (7)=1+{\frac {1}{2^{7}}}+{\frac {1}{3^{7}}}+\cdots =1.00834\dots \!}
(OEIS : A013665 )
ζ
(
9
)
=
1
+
1
2
9
+
1
3
9
+
⋯
=
1.002008
…
{\displaystyle \zeta (9)=1+{\frac {1}{2^{9}}}+{\frac {1}{3^{9}}}+\cdots =1.002008\dots \!}
(OEIS : A013667 )
It is known that ζ (3) is irrational (Apéry's theorem ) and that infinitely many of the numbers ζ (2n + 1) : n ∈ ℕ , are irrational.[ 1] There are also results on the irrationality of values of the Riemann zeta function at the elements of certain subsets of the positive odd integers; for example, at least one of ζ (5), ζ (7), ζ (9), or ζ (11) is irrational.[ 2]
The positive odd integers of the zeta function appear in physics, specifically correlation functions of antiferromagnetic XXX spin chain .[ 3]
Most of the identities following below are provided by Simon Plouffe . They are notable in that they converge quite rapidly, giving almost three digits of precision per iteration, and are thus useful for high-precision calculations.
ζ (5)
Plouffe gives the following identities
ζ
(
5
)
=
1
294
π
5
−
72
35
∑
n
=
1
∞
1
n
5
(
e
2
π
n
−
1
)
−
2
35
∑
n
=
1
∞
1
n
5
(
e
2
π
n
+
1
)
ζ
(
5
)
=
12
∑
n
=
1
∞
1
n
5
sinh
(
π
n
)
−
39
20
∑
n
=
1
∞
1
n
5
(
e
2
π
n
−
1
)
−
1
20
∑
n
=
1
∞
1
n
5
(
e
2
π
n
+
1
)
{\displaystyle {\begin{aligned}\zeta (5)&={\frac {1}{294}}\pi ^{5}-{\frac {72}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}-{\frac {2}{35}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\\\zeta (5)&=12\sum _{n=1}^{\infty }{\frac {1}{n^{5}\sinh(\pi n)}}-{\frac {39}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}-1)}}-{\frac {1}{20}}\sum _{n=1}^{\infty }{\frac {1}{n^{5}(e^{2\pi n}+1)}}\end{aligned}}}
ζ (7)
ζ
(
7
)
=
19
56700
π
7
−
2
∑
n
=
1
∞
1
n
7
(
e
2
π
n
−
1
)
{\displaystyle \zeta (7)={\frac {19}{56700}}\pi ^{7}-2\sum _{n=1}^{\infty }{\frac {1}{n^{7}(e^{2\pi n}-1)}}\!}
Note that the sum is in the form of a Lambert series .
ζ (2n + 1)
By defining the quantities
S
±
(
s
)
=
∑
n
=
1
∞
1
n
s
(
e
2
π
n
±
1
)
{\displaystyle S_{\pm }(s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}(e^{2\pi n}\pm 1)}}}
a series of relationships can be given in the form
0
=
A
n
ζ
(
n
)
−
B
n
π
n
+
C
n
S
−
(
n
)
+
D
n
S
+
(
n
)
{\displaystyle 0=A_{n}\zeta (n)-B_{n}\pi ^{n}+C_{n}S_{-}(n)+D_{n}S_{+}(n)\,}
where A n , B n , C n and D n are positive integers. Plouffe gives a table of values:
coefficients
n
A
B
C
D
3
180
7
360
0
5
1470
5
3024
84
7
56700
19
113400
0
9
18523890
625
37122624
74844
11
425675250
1453
851350500
0
13
257432175
89
514926720
62370
15
390769879500
13687
781539759000
0
17
1904417007743250
6758333
3808863131673600
29116187100
19
21438612514068750
7708537
42877225028137500
0
21
1881063815762259253125
68529640373
3762129424572110592000
1793047592085750
These integer constants may be expressed as sums over Bernoulli numbers, as given in (Vepstas, 2006) below.
A fast algorithm for the calculation of Riemann's zeta function for any integer argument is given by E. A. Karatsuba.[ 4] [ 5] [ 6]
Negative integers
In general, for negative integers (and also zero), one has
ζ
(
−
n
)
=
(
−
1
)
n
B
n
+
1
n
+
1
{\displaystyle \zeta (-n)=(-1)^{n}{\frac {B_{n+1}}{n+1}}}
The so-called "trivial zeros" occur at the negative even integers:
ζ
(
−
2
n
)
=
0
{\displaystyle \zeta (-2n)=0\,}
The first few values for negative odd integers are
ζ
(
−
1
)
=
−
1
12
ζ
(
−
3
)
=
1
120
ζ
(
−
5
)
=
−
1
252
ζ
(
−
7
)
=
1
240
ζ
(
−
9
)
=
−
1
132
ζ
(
−
11
)
=
691
32760
ζ
(
−
13
)
=
−
1
12
{\displaystyle {\begin{aligned}\zeta (-1)&=-{\frac {1}{12}}\\\zeta (-3)&={\frac {1}{120}}\\\zeta (-5)&=-{\frac {1}{252}}\\\zeta (-7)&={\frac {1}{240}}\\\zeta (-9)&=-{\frac {1}{132}}\\\zeta (-11)&={\frac {691}{32760}}\\\zeta (-13)&=-{\frac {1}{12}}\end{aligned}}}
However, just like the Bernoulli numbers , these do not stay small for increasingly negative odd values. For details on the first value, see 1 + 2 + 3 + 4 + · · · .
So ζ (m ) can be used as the definition of all (including those for index 0 and 1) Bernoulli numbers.
Derivatives
The derivative of the zeta function at the negative even integers is given by
ζ
′
(
−
2
n
)
=
(
−
1
)
n
(
2
n
)
!
2
(
2
π
)
2
n
ζ
(
2
n
+
1
)
{\displaystyle \zeta ^{\prime }(-2n)=(-1)^{n}{\frac {(2n)!}{2(2\pi )^{2n}}}\zeta (2n+1)}
The first few values of which are
ζ
′
(
−
2
)
=
−
ζ
(
3
)
4
π
2
ζ
′
(
−
4
)
=
3
4
π
4
ζ
(
5
)
ζ
′
(
−
6
)
=
−
45
8
π
6
ζ
(
7
)
ζ
′
(
−
8
)
=
315
4
π
8
ζ
(
9
)
{\displaystyle {\begin{aligned}\zeta ^{\prime }(-2)&=-{\frac {\zeta (3)}{4\pi ^{2}}}\\[6pt]\zeta ^{\prime }(-4)&={\frac {3}{4\pi ^{4}}}\zeta (5)\\[6pt]\zeta ^{\prime }(-6)&=-{\frac {45}{8\pi ^{6}}}\zeta (7)\\[6pt]\zeta ^{\prime }(-8)&={\frac {315}{4\pi ^{8}}}\zeta (9)\end{aligned}}}
One also has
ζ
′
(
0
)
=
−
1
2
ln
(
2
π
)
≈
−
0.918938533
…
{\displaystyle \zeta ^{\prime }(0)=-{\frac {1}{2}}\ln(2\pi )\approx -0.918938533\ldots }
(OEIS : A075700 ),
ζ
′
(
−
1
)
=
1
12
−
ln
A
≈
−
0.1654211437
…
{\displaystyle \zeta ^{\prime }(-1)={\frac {1}{12}}-\ln A\approx -0.1654211437\ldots }
(OEIS : A084448 )
and
ζ
′
(
2
)
=
1
6
π
2
(
γ
+
ln
2
−
12
ln
A
+
ln
π
)
≈
−
0.93754825
…
{\displaystyle \zeta ^{\prime }(2)={\frac {1}{6}}\pi ^{2}(\gamma +\ln 2-12\ln A+\ln \pi )\approx -0.93754825\ldots }
(OEIS : A073002 )
where A is the Glaisher–Kinkelin constant .
Series involving ζ (n )
The following sums can be derived from the generating function:
∑
k
=
2
∞
ζ
(
k
)
x
k
−
1
=
−
ψ
0
(
1
−
x
)
−
γ
{\displaystyle \sum _{k=2}^{\infty }\zeta (k)x^{k-1}=-\psi _{0}(1-x)-\gamma }
where ψ 0 is the digamma function .
∑
k
=
2
∞
(
ζ
(
k
)
−
1
)
=
1
{\displaystyle \sum _{k=2}^{\infty }(\zeta (k)-1)=1}
∑
k
=
1
∞
(
ζ
(
2
k
)
−
1
)
=
3
4
{\displaystyle \sum _{k=1}^{\infty }(\zeta (2k)-1)={\frac {3}{4}}}
∑
k
=
1
∞
(
ζ
(
2
k
+
1
)
−
1
)
=
1
4
{\displaystyle \sum _{k=1}^{\infty }(\zeta (2k+1)-1)={\frac {1}{4}}}
∑
k
=
2
∞
(
−
1
)
k
(
ζ
(
k
)
−
1
)
=
1
2
{\displaystyle \sum _{k=2}^{\infty }(-1)^{k}(\zeta (k)-1)={\frac {1}{2}}}
Series related to the Euler–Mascheroni constant (denoted by γ ) are
∑
k
=
2
∞
(
−
1
)
k
ζ
(
k
)
k
=
γ
{\displaystyle \sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}=\gamma }
∑
k
=
2
∞
ζ
(
k
)
−
1
k
=
1
−
γ
{\displaystyle \sum _{k=2}^{\infty }{\frac {\zeta (k)-1}{k}}=1-\gamma }
∑
k
=
2
∞
(
−
1
)
k
ζ
(
k
)
−
1
k
=
ln
2
+
γ
−
1
{\displaystyle \sum _{k=2}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}=\ln 2+\gamma -1}
and using the principal value
ζ
(
k
)
=
lim
ε
→
0
ζ
(
k
+
ε
)
+
ζ
(
k
−
ε
)
2
{\displaystyle \zeta (k)=\lim _{\varepsilon \to 0}{\frac {\zeta (k+\varepsilon )+\zeta (k-\varepsilon )}{2}}}
which of course affects only the value at 1, these formulae can be stated as
∑
k
=
1
∞
(
−
1
)
k
ζ
(
k
)
k
=
0
{\displaystyle \sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)}{k}}=0}
∑
k
=
1
∞
ζ
(
k
)
−
1
k
=
0
{\displaystyle \sum _{k=1}^{\infty }{\frac {\zeta (k)-1}{k}}=0}
∑
k
=
1
∞
(
−
1
)
k
ζ
(
k
)
−
1
k
=
ln
2
{\displaystyle \sum _{k=1}^{\infty }(-1)^{k}{\frac {\zeta (k)-1}{k}}=\ln 2}
and show that they depend on the principal value of ζ (1) = γ .
Nontrivial zeros
Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". See Andrew Odlyzko 's website for their tables and bibliographies.
References
^ Rivoal, T. (2000). "La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs". Comptes Rendus de l'Académie des Sciences, Série I . 331 : 267–270. arXiv :math/0008051 . Bibcode :2000CRASM.331..267R . doi :10.1016/S0764-4442(00)01624-4 .
^ W. Zudilin (2001). "One of the numbers ζ (5), ζ (7), ζ (9), ζ (11) is irrational". Russ. Math. Surv . 56 (4): 774–776. Bibcode :2001RuMaS..56..774Z . doi :10.1070/rm2001v056n04abeh000427 .
^ Boos, H.E.; Korepin, V.E.; Nishiyama, Y.; Shiroishi, M. (2002). "Quantum correlations and number theory". J. Phys. A . 35 : 4443–4452. arXiv :cond-mat/0202346 . Bibcode :2002JPhA...35.4443B . doi :10.1088/0305-4470/35/20/305 . .
^ Karatsuba, E. A. (1995). "Fast calculation of the Riemann zeta function ζ (s ) for integer values of the argument s " . Probl. Perdachi Inf . 31 (4): 69–80. MR 1367927 .
^ E. A. Karatsuba: Fast computation of the Riemann zeta function for integer argument. Dokl. Math. Vol.54, No.1, p. 626 (1996).
^ E. A. Karatsuba: Fast evaluation of ζ (3). Probl. Inf. Transm. Vol.29, No.1, pp. 58–62 (1993).
Further reading
Ciaurri, Óscar; Navas, Luis M.; Ruiz, Francisco J.; Varona, Juan L. (May 2015). "A Simple Computation of ζ (2k )". The American Mathematical Monthly . 122 (5): 444–451. doi :10.4169/amer.math.monthly.122.5.444 . JSTOR 10.4169/amer.math.monthly.122.5.444 .
Simon Plouffe , "Identities inspired from Ramanujan Notebooks ", (1998).
Simon Plouffe , "Identities inspired by Ramanujan Notebooks part 2 PDF " (2006).
Vepstas, Linas (2006). "On Plouffe's Ramanujan Identities" (PDF) . arXiv :math.NT/0609775 .
Zudilin, Wadim (2001). "One of the Numbers ζ (5), ζ (7), ζ (9), ζ (11) Is Irrational". Russian Mathematical Surveys . 56 : 774–776. Bibcode :2001RuMaS..56..774Z . doi :10.1070/RM2001v056n04ABEH000427 . MR 1861452 . PDF PDF Russian PS Russian
Nontrival zeros reference by Andrew Odlyzko :