Jump to content

Odorant-binding protein

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by OAbot (talk | contribs) at 01:34, 3 January 2021 (Open access bot: doi added to citation with #oabot.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Odorant-binding proteins (OBPs) are small (10 to 30 kDa) soluble proteins secreted by auxiliary cells surrounding olfactory receptor neurons, including the nasal mucus of many vertebrate species and in the sensillar lymph of chemosensory sensilla of insects. OBPs are characterized by a specific protein domain that comprises six α-helices joined by three disulfide bonds. Although the function of the OBPs as a whole is not well established, it is believed that they act as odorant transporters, delivering the odorant molecules to olfactory receptors in the cell membrane of sensory neurons.

The olfactory receptors of terrestrial animals exist in an aqueous environment, yet detect odorants that are primarily hydrophobic.[1] The aqueous solubility of hydrophobic odorants is greatly enhanced via odorant-binding proteins, which exist in the extracellular fluid surrounding the odorant receptors.[1] This family is composed of pheromone binding proteins (PBP), which are male-specific and associate with pheromone-sensitive neurons and general-odorant-binding proteins (GOBP).

These proteins were initially identified on the basis of their ability to bind with moderate-affinity radioactively labeled odorants.[2][3]

Structure

OBPs are small proteins on the order of 14 kDa in size. All odorant binding proteins are believed to have a common structure despite their genetic diversity and highly variable primary structures.[4] In vertebrates, OBPs are a part of the lipocalin family. They are structurally characterized by a β-barrel motif composed of antiparallel β-sheets. Insect OBPs share very little amino acid sequence similarity to vertebrate OBPs as they mainly contain α-helical domains.[5][6][7] OBPs are divergent across and within species. The percentage of conserved residues between species has been shown to be as low as 8%.[7] OBPs' have a characteristic signature that is recognized by a conserved pattern of six cysteines that are connected in the protein by three disulfide bridges.[8] Their structures have been investigated to explore new bio-inspired repellents against mosquitoes, with potentially improved OBP binding affinity, selectivity, and reduced volatility.[9][10]

Function

The functions of odorant binding proteins as a whole is not well understood. They are generally believed to increase the solubility of hydrophobic odorants by binding them and transporting them across the aqueous sensillum lymph to receptors in the dendrites,[11][5][12][13][14][15] and several studies support a role for OBPs in olfactory perception in vivo.[16][17][18] Some odorant binding proteins are hypothesized to hasten odor response termination by extracting odorant molecules from the sensillar lymph or from receptors themselves.[19][20] Presently, just one OBP, Obp76a, has been thoroughly investigated in the olfactory system of Drosophila and has a known physiological role.[11][14][21] Obp76a, better known as LUSH, is located trichoid sensilla and is necessary for normal response of the odor receptor Or67d to its pheromone ligand cis-vaccenyl acetate (cVA), although responses of Or67d to cVA have been detected in the absence of Obp76a[11][22][23][24] LUSH has also been found to bind cVA in vitro[21][25] and is known to bind other insect pheromones,[26] short-chain alcohols,[27][28] and phthalates.[29]

In 2016, Larter et al. found that the deletion of the sole abundant OBP, Obp28a, in ab8 sensilla of Drosophila does not reduce the magnitude of their olfactory responses, suggesting that Obp28a is not required for odorant transport and that ab8 sensilla do not require an abundant OBP. Their results further suggest Obp28a may be buffering changes in the odor environment, possibly as molecular gain control, which has not been previously reported for OBPs.[30]

OBPs are thought to have multiple roles besides olfaction, including reproduction, egg laying and antiinflammatory responses.[31]

Expression

OBPs are numerous and diverse. In Drosophila, they are encoded by 52 genes of the same family yet only share 20% amino acid similarity between themselves. Some are encoded by the most abundant mRNAs of the antennae.[32][33] Within and between species, OBPs are expressed in several different tissues, including the antennal sensilla,[34][35][36] the taste system, and chemosensory organs.[37][38][35][39][40] They are also known to be ectopically expressed in tissues such as the gut.[15]

Genomic analysis of Drosophila and other insect species (Anopheles gambiae, Apis mellifera, Bombyx mori, and Triboliumcastaneum) has revealed that the OBP genes significantly differ between species. The OBP family contains 21 (in A. mellifera) to 66 genes (in A. gambiae), whereas it ranges from 52 members in Drosophila to 20 in T. castaneum.[41][42][43] Generally these genes are irregularly scattered across the genome. Most (69% of the OBP genes in Drosophila) are arranged in small clusters from 2 to 6 OBP genes.[43] The Drosophila OBP gene family has been classified into several subfamilies based on structural features, functional information, and phylogenetic relationships: the Classic, Minus-C, Plus-C, Dimer, PBP/GOBP, ABPI and ABPII, CRLBP, and D7 subfamilies.[43] These subfamilies are unequally distributed across arthropods, even among the dipterans and are totally absent in some species.[15]

See also

References

  1. ^ a b Vogt, R. G.; Prestwich, G. D.; Lerner, M. R. (January 1991). "Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects". Journal of Neurobiology. 22 (1): 74–84. doi:10.1002/neu.480220108. ISSN 0022-3034. PMID 2010751.
  2. ^ Pelosi, P.; Baldaccini, N. E.; Pisanelli, A. M. (1982-01-01). "Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine". The Biochemical Journal. 201 (1): 245–248. doi:10.1042/bj2010245. ISSN 0264-6021. PMC 1163633. PMID 7082286.
  3. ^ Shi, W.; Ostrov, D.A.; Gerchman, S.E.; Graziano, V.; Kycia, H.; Studier, B.; Almo, S.C.; Burley, S.K. (1999-08-25). "PNP Oxidase from Saccharomyces Cerevisiae". doi:10.2210/pdb1ci0/pdb. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ Graham, Laurie A; Davies, Peter L (June 2002). "The odorant-binding proteins of Drosophila melanogaster : annotation and characterization of a divergent gene family". Gene. 292 (1–2): 43–55. doi:10.1016/s0378-1119(02)00672-8. ISSN 0378-1119. PMID 12119098.
  5. ^ a b Sandler, Benjamin H; Nikonova, Larisa; Leal, Walter S; Clardy, Jon (February 2000). "Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein–bombykol complex". Chemistry & Biology. 7 (2): 143–151. doi:10.1016/s1074-5521(00)00078-8. ISSN 1074-5521. PMID 10662696.
  6. ^ Lartigue, Audrey; Campanacci, Valérie; Roussel, Alain; Larsson, Anna M.; Jones, T. Alwyn; Tegoni, Mariella; Cambillau, Christian (2002-08-30). "X-ray Structure and Ligand Binding Study of a Moth Chemosensory Protein". Journal of Biological Chemistry. 277 (35): 32094–32098. doi:10.1074/jbc.M204371200. ISSN 0021-9258. PMID 12068017.
  7. ^ a b Tegoni, Mariella; Campanacci, Valérie; Cambillau, Christian (May 2004). "Structural aspects of sexual attraction and chemical communication in insects". Trends in Biochemical Sciences. 29 (5): 257–264. doi:10.1016/j.tibs.2004.03.003. ISSN 0968-0004. PMID 15130562.
  8. ^ Pelosi, P. (2005-01-01). "Diversity of Odorant-binding Proteins and Chemosensory Proteins in Insects". Chemical Senses. 30 (Supplement 1): i291–i292. doi:10.1093/chemse/bjh229. ISSN 0379-864X. PMID 15738163.
  9. ^ da Costa, Kauȇ Santana; Galúcio, João Marcos; da Costa, Clauber Henrique Souza; Santana, Amanda Ruslana; dos Santos Carvalho, Vitor; do Nascimento, Lidiane Diniz; Lima e Lima, Anderson Henrique; Neves Cruz, Jorddy; Alves, Claudio Nahum; Lameira, Jerônimo (2019-12-31). "Exploring the Potentiality of Natural Products from Essential Oils as Inhibitors of Odorant-Binding Proteins: A Structure- and Ligand-Based Virtual Screening Approach To Find Novel Mosquito Repellents". ACS Omega. 4 (27): 22475–22486. doi:10.1021/acsomega.9b03157. ISSN 2470-1343. PMC 6941369. PMID 31909330.
  10. ^ Thireou, Trias; Kythreoti, Georgia; Tsitsanou, Katerina E.; Koussis, Konstantinos; Drakou, Christina E.; Kinnersley, Julie; Kröber, Thomas; Guerin, Patrick M.; Zhou, Jing-Jiang; Iatrou, Kostas; Eliopoulos, Elias (July 2018). "Identification of novel bioinspired synthetic mosquito repellents by combined ligand-based screening and OBP-structure-based molecular docking". Insect Biochemistry and Molecular Biology. 98: 48–61. doi:10.1016/j.ibmb.2018.05.001.
  11. ^ a b c Gomez-Diaz, Carolina; Reina, Jaime H.; Cambillau, Christian; Benton, Richard (2013-04-30). "Ligands for Pheromone-Sensing Neurons Are Not Conformationally Activated Odorant Binding Proteins". PLOS Biology. 11 (4): e1001546. doi:10.1371/journal.pbio.1001546. ISSN 1545-7885. PMC 3640100. PMID 23637570.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  12. ^ Vogt, R. G.; Riddiford, L. M.; Prestwich, G. D. (1985-12-01). "Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus". Proceedings of the National Academy of Sciences. 82 (24): 8827–8831. doi:10.1073/pnas.82.24.8827. ISSN 0027-8424. PMC 391531. PMID 3001718.
  13. ^ Wojtasek, Hubert; Leal, Walter S. (1999-10-22). "Conformational Change in the Pheromone-binding Protein fromBombyx mori Induced by pH and by Interaction with Membranes". Journal of Biological Chemistry. 274 (43): 30950–30956. doi:10.1074/jbc.274.43.30950. ISSN 0021-9258. PMID 10521490.
  14. ^ a b Xu, PingXi; Atkinson, Rachel; Jones, David N.M.; Smith, Dean P. (January 2005). "Drosophila OBP LUSH Is Required for Activity of Pheromone-Sensitive Neurons". Neuron. 45 (2): 193–200. doi:10.1016/j.neuron.2004.12.031. ISSN 0896-6273. PMID 15664171.
  15. ^ a b c Vieira, Filipe G.; Rozas, Julio (2011-01-01). "Comparative Genomics of the Odorant-Binding and Chemosensory Protein Gene Families across the Arthropoda: Origin and Evolutionary History of the Chemosensory System". Genome Biology and Evolution. 3: 476–490. doi:10.1093/gbe/evr033. PMC 3134979. PMID 21527792.
  16. ^ Biessmann, Harald; Andronopoulou, Evi; Biessmann, Max R.; Douris, Vassilis; Dimitratos, Spiros D.; Eliopoulos, Elias; Guerin, Patrick M.; Iatrou, Kostas; Justice, Robin W. (2010-03-01). "The Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) Mediates Indole Recognition in the Antennae of Female Mosquitoes". PLOS ONE. 5 (3): e9471. doi:10.1371/journal.pone.0009471. ISSN 1932-6203. PMC 2830424. PMID 20208991.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  17. ^ Pelletier, Julien; Guidolin, Aline; Syed, Zainulabeuddin; Cornel, Anthony J.; Leal, Walter S. (2010-02-27). "Knockdown of a Mosquito Odorant-binding Protein Involved in the Sensitive Detection of Oviposition Attractants". Journal of Chemical Ecology. 36 (3): 245–248. doi:10.1007/s10886-010-9762-x. ISSN 0098-0331. PMC 2837830. PMID 20191395.
  18. ^ Swarup, S.; Williams, T. I.; Anholt, R. R. H. (2011-06-14). "Functional dissection of Odorant binding protein genes in Drosophila melanogaster". Genes, Brain and Behavior. 10 (6): 648–657. doi:10.1111/j.1601-183x.2011.00704.x. ISSN 1601-1848. PMC 3150612. PMID 21605338.
  19. ^ Vogt, Richard G.; Riddiford, Lynn M. (September 1981). "Pheromone binding and inactivation by moth antennae". Nature. 293 (5828): 161–163. doi:10.1038/293161a0. ISSN 0028-0836. PMID 18074618.
  20. ^ Ziegelberger, Gunde (September 1995). "Redox-Shift of the Pheromone-Binding Protein in the Silkmoth Antheraea Polyphemus". European Journal of Biochemistry. 232 (3): 706–711. doi:10.1111/j.1432-1033.1995.tb20864.x. ISSN 0014-2956.
  21. ^ a b Laughlin, John D.; Ha, Tal Soo; Jones, David N.M.; Smith, Dean P. (June 2008). "Activation of Pheromone-Sensitive Neurons Is Mediated by Conformational Activation of Pheromone-Binding Protein". Cell. 133 (7): 1255–1265. doi:10.1016/j.cell.2008.04.046. ISSN 0092-8674. PMC 4397981. PMID 18585358.
  22. ^ Benton, Richard; Vannice, Kirsten S.; Vosshall, Leslie B. (2007-10-17). "An essential role for a CD36-related receptor in pheromone detection in Drosophila". Nature. 450 (7167): 289–293. doi:10.1038/nature06328. ISSN 0028-0836. PMID 17943085.
  23. ^ Li, Zhengzheng; Ni, Jinfei D.; Huang, Jia; Montell, Craig (2014-09-25). "Requirement for Drosophila SNMP1 for Rapid Activation and Termination of Pheromone-Induced Activity". PLOS Genetics. 10 (9): e1004600. doi:10.1371/journal.pgen.1004600. ISSN 1553-7404. PMC 4177743. PMID 25255106.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  24. ^ van der Goes van Naters, Wynand; Carlson, John R. (April 2007). "Receptors and Neurons for Fly Odors in Drosophila". Current Biology. 17 (7): 606–612. doi:10.1016/j.cub.2007.02.043. ISSN 0960-9822. PMC 1876700. PMID 17363256.
  25. ^ Kruse, Schoen W; Zhao, Rui; Smith, Dean P; Jones, David N M (2003-07-27). "Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster". Nature Structural & Molecular Biology. 10 (9): 694–700. doi:10.1038/nsb960. ISSN 1545-9993. PMC 4397894. PMID 12881720.
  26. ^ Katti, S.; Lokhande, N.; González, D.; Cassill, A.; Renthal, R. (2012-11-01). "Quantitative analysis of pheromone-binding protein specificity". Insect Molecular Biology. 22 (1): 31–40. doi:10.1111/j.1365-2583.2012.01167.x. ISSN 0962-1075. PMC 3552018. PMID 23121132.
  27. ^ Bucci, Brigid K.; Kruse, Schoen W.; Thode, Anna B.; Alvarado, Sylvia M.; Jones, David N. M. (February 2006). "Effect ofn-Alcohols on the Structure and Stability of theDrosophilaOdorant Binding Protein LUSH†". Biochemistry. 45 (6): 1693–1701. doi:10.1021/bi0516576. ISSN 0006-2960. PMID 16460016.
  28. ^ Thode, Anna B.; Kruse, Schoen W.; Nix, Jay C.; Jones, David N.M. (March 2008). "The Role of Multiple Hydrogen-Bonding Groups in Specific Alcohol Binding Sites in Proteins: Insights from Structural Studies of LUSH". Journal of Molecular Biology. 376 (5): 1360–1376. doi:10.1016/j.jmb.2007.12.063. ISSN 0022-2836. PMC 2293277. PMID 18234222.
  29. ^ Zhou, Jing-Jiang; Zhang, Guo-An; Huang, Wensheng; Birkett, Michael A; Field, Linda M; Pickett, John A; Pelosi, Paolo (2004-01-07). "Revisiting the odorant-binding protein LUSH ofDrosophila melanogaster: evidence for odour recognition and discrimination". FEBS Letters. 558 (1–3): 23–26. doi:10.1016/s0014-5793(03)01521-7. ISSN 0014-5793. PMID 14759510.
  30. ^ Larter, Nikki K; Sun, Jennifer S; Carlson, John R (2016-11-15). "Organization and function of Drosophila odorant binding proteins". eLife. 5. doi:10.7554/elife.20242. ISSN 2050-084X. PMC 5127637. PMID 27845621.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  31. ^ Pelosi, Paolo; Iovinella, Immacolata; Zhu, Jiao; Wang, Guirong; Dani, Francesca R. (2018). "Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects". Biological Reviews. 93 (1): 184–200. doi:10.1111/brv.12339. ISSN 1469-185X. PMID 28480618.
  32. ^ Hekmat-Scafe, Daria S.; Scafe, Charles R.; McKinney, Aimee J.; Tanouye, Mark A. (2002-09-01). "Genome-Wide Analysis of the Odorant-Binding Protein Gene Family in Drosophila melanogaster". Genome Research. 12 (9): 1357–1369. doi:10.1101/gr.239402. ISSN 1088-9051. PMC 186648. PMID 12213773.
  33. ^ Menuz, Karen; Larter, Nikki K.; Park, Joori; Carlson, John R. (2014-11-20). "An RNA-Seq Screen of the Drosophila Antenna Identifies a Transporter Necessary for Ammonia Detection". PLOS Genetics. 10 (11): e1004810. doi:10.1371/journal.pgen.1004810. ISSN 1553-7404. PMC 4238959. PMID 25412082.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  34. ^ McKenna, M. P.; Hekmat-Scafe, D. S.; Gaines, P.; Carlson, J. R. (1994-06-10). "Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system". The Journal of Biological Chemistry. 269 (23): 16340–16347. ISSN 0021-9258. PMID 8206941.
  35. ^ a b Pikielny, C.W.; Hasan, G.; Rouyer, F.; Rosbash, M. (January 1994). "Members of a family of drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs". Neuron. 12 (1): 35–49. doi:10.1016/0896-6273(94)90150-3. ISSN 0896-6273. PMID 7545907.
  36. ^ Schultze, Anna; Pregitzer, Pablo; Walter, Marika F.; Woods, Daniel F.; Marinotti, Osvaldo; Breer, Heinz; Krieger, Jürgen (2013-07-05). "The Co-Expression Pattern of Odorant Binding Proteins and Olfactory Receptors Identify Distinct Trichoid Sensilla on the Antenna of the Malaria Mosquito Anopheles gambiae". PLOS ONE. 8 (7): e69412. doi:10.1371/journal.pone.0069412. ISSN 1932-6203. PMC 3702612. PMID 23861970.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  37. ^ Galindo, K.; Smith, D. P. (November 2001). "A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla". Genetics. 159 (3): 1059–1072. ISSN 0016-6731. PMC 1461854. PMID 11729153.
  38. ^ Jeong, Yong Taek; Shim, Jaewon; Oh, So Ra; Yoon, Hong In; Kim, Chul Hoon; Moon, Seok Jun; Montell, Craig (August 2013). "An Odorant-Binding Protein Required for Suppression of Sweet Taste by Bitter Chemicals". Neuron. 79 (4): 725–737. doi:10.1016/j.neuron.2013.06.025. ISSN 0896-6273. PMC 3753695. PMID 23972598.
  39. ^ S., Shanbhag; S.-K., Park; C., Pikielny; R., Steinbrecht (2001-05-28). "Gustatory organs of Drosophila melanogaster : fine structure and expression of the putative odorant-binding protein PBPRP2". Cell and Tissue Research. 304 (3): 423–437. doi:10.1007/s004410100388. ISSN 0302-766X. PMID 11456419.
  40. ^ Park, S.-K.; Shanbhag, S. R.; Wang, Q.; Hasan, G.; Steinbrecht, R. A.; Pikielny, C. W. (2000-03-30). "Expression patterns of two putative odorant-binding proteins in the olfactory organs of Drosophila melanogaster have different implications for their functions". Cell and Tissue Research. 300 (1): 181–192. doi:10.1007/s004410050059. ISSN 0302-766X.
  41. ^ Forêt, Sylvain; Maleszka, Ryszard (November 2006). "Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera)". Genome Research. 16 (11): 1404–1413. doi:10.1101/gr.5075706. ISSN 1088-9051. PMC 1626642. PMID 17065610.
  42. ^ Forêt, Sylvain; Wanner, Kevin W.; Maleszka, Ryszard (January 2007). "Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling". Insect Biochemistry and Molecular Biology. 37 (1): 19–28. doi:10.1016/j.ibmb.2006.09.009. ISSN 0965-1748. PMID 17175443.
  43. ^ a b c Vieira, Filipe G.; Sánchez-Gracia, Alejandro; Rozas, Julio (2007). "Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes: purifying selection and birth-and-death evolution". Genome Biology. 8 (11): R235. doi:10.1186/gb-2007-8-11-r235. ISSN 1474-760X. PMC 2258175. PMID 18039354.{{cite journal}}: CS1 maint: unflagged free DOI (link)