Jump to content

Arbitrary code execution

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by ChiveFungi (talk | contribs) at 01:58, 8 April 2018 (Undid revision 835331679 by Special:Contributions/2001:4898:80E8:1:0:0:0:6FD). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In computer security, "arbitrary code execution" is used to describe an attacker's ability to execute any command of the attacker's choice on a target machine or in a target process. It is commonly used in arbitrary code execution vulnerability to describe a software bug that gives an attacker a way to execute arbitrary code. A program that is designed to exploit such a vulnerability is called an arbitrary code execution exploit. Most of these vulnerabilities allow the execution of machine code and most exploits therefore inject and execute shellcode to give an attacker an easy way to manually run arbitrary commands. The ability to trigger arbitrary code execution from one machine on another (especially via a wide-area network such as the Internet) is often referred to as remote code execution.

While arbitrary code execution is most often used for code injection (to inject code into a functioning system), the process has also been demonstrated by coding enthusiasts to allow the user to write code of their own in languages such as assembly, using the system itself to create and activate the produced scripts. In particular, one user, with the help of emulators and programmed inputs, managed to code and create a primitive version of the game Pong in a copy of Super Mario World, as well as Flappy Bird using arbitrary code execution.[1]

It is the most powerful effect a bug can have because it allows an attacker to completely take over the vulnerable process. From there the attacker can potentially take complete control over the machine the process is running on. Arbitrary code execution vulnerabilities are commonly exploited by malware to run on a computer without the owner's consent or by an owner to run homebrew software on a device without the manufacturer's consent.

Arbitrary code execution is commonly achieved through control over the instruction pointer (such as a jump or a branch) of a running process. The instruction pointer points to the next instruction in the process that will be executed. Control over the value of the instruction pointer therefore gives control over which instruction is executed next. In order to execute arbitrary code, many exploits inject code into the process (for example by sending input to it which gets stored in an input buffer in RAM) and use a vulnerability to change the instruction pointer to have it point to the injected code. The injected code will then automatically get executed. This type of attack exploits the fact that most computers do not make a general distinction between code and data, so that malicious code can be camouflaged as harmless input data. Many newer CPUs have mechanisms to make this harder, such as a no-execute bit.

Once the invader can execute arbitrary code directly on the OS, there is often an attempt at a privilege escalation exploit in order to gain additional control. This may involve the kernel itself or an account such as Administrator, SYSTEM, or root. With or without this enhanced control, exploits have the potential to do severe damage or turn the computer into a zombie - but privilege escalation helps with hiding the attack from the legitimate administrator of the system. An arbitrary remote code execution with privilege escalation vulnerability in widely deployed software is thus the most powerful vulnerability sub-type of them all. If bugs of this kind become known, fixes are usually made available within a few hours.

Many WordPress or other CMS websites are vulnerable to remote code injection attacks. The vulnerability generally is introduced by third party plugins.

References

  1. ^ Orland, Kyle (14 January 2014). "How an emulator-fueled robot reprogrammed Super Mario World on the fly". arstechnica.com. Retrieved 27 July 2016.