Jump to content

B-convex space

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Headbomb (talk | contribs) at 00:47, 4 September 2011 (References: Various citation cleanup (identifiers mostly) using AWB). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In functional analysis, the class of B-convex spaces is a class of Banach space. The concept of B-convexity was defined and used to characterize Banach spaces that have the strong law of large numbers by Anatole Beck in 1962; accordingly, "B-convexity" is understood as an abbreviation of Beck convexity. Beck proved the following theorem: A Banach space is B-convex if and only if every sequence of independent, symmetric, uniformly bounded and Radon random variables in that space satisfies the strong law of large numbers.

Let X be a Banach space with norm || ||. X is said to be B-convex if for some ε > 0 and some natural number n, it holds true that whenever x1, ..., xn are elements of the closed unit ball of X, there is a choice of signs α1, ..., αn ∈ {−1, +1} such that

Later authors have shown that B-convexity is equivalent to a number of other important properties in the theory of Banach spaces. Being B-convex and having Rademacher type were shown to be equivalent Banach-space properties by Gilles Pisier.

References

  • Beck, Anatole (1962). "A convexity condition in Banach spaces and the strong law of large numbers". Proc. Amer. Math. Soc. 13 (2): 329–334. doi:10.1090/S0002-9939-1962-0133857-9. ISSN 0002-9939. MR 0133857.
  • Ledoux, Michel; Talagrand, Michel (1991). Probability in Banach spaces. Berlin: Springer-Verlag. pp. xii+480. ISBN 3-540-52013-9. MR 1102015. (See chapter 9)