Jump to content

Binomial inverse theorem

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Bender235 (talk | contribs) at 23:46, 8 November 2016. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the binomial inverse theorem is useful for expressing matrix inverses in different ways.

If A, U, B, V are matrices of sizes p×p, p×q, q×q, q×p, respectively, then

provided A and B + BVA−1UB are nonsingular. Nonsingularity of the latter requires that B−1 exist since it equals B(I+VA—1UB) and the rank of the latter cannot exceed the rank of B.[1]

Since B is invertible, the two B terms flanking the parenthetical quantity inverse in the right-hand side can be replaced with (B−1)−1, which results in

This is the Woodbury matrix identity, which can also be derived using matrix blockwise inversion.

A more general formula exists when B is singular and possibly even non-square:[1]

Formulas also exist for certain cases in which A is singular.[2]

Verification

First notice that

Now multiply the matrix we wish to invert by its alleged inverse:

which verifies that it is the inverse.

So we get that if A−1 and exist, then exists and is given by the theorem above.[3]

Special cases

First

If p = q and U = V = Ip is the identity matrix, then

Remembering the identity

we can also express the previous equation in the simpler form as

Continuing with the merging of the terms of the far right-hand side of the above equation results in Hua's identity


Second

If B = Iq is the identity matrix and q = 1, then U is a column vector, written u, and V is a row vector, written vT. Then the theorem implies the Sherman-Morrison formula:

This is useful if one has a matrix A with a known inverse A−1 and one needs to invert matrices of the form A+uvT quickly for various u and v.

Third

If we set A = Ip and B = Iq, we get

In particular, if q = 1, then

which is a particular case of the Sherman-Morrison formula given above.

See also

References

  1. ^ a b Henderson, H. V., and Searle, S. R. (1981), "On deriving the inverse of a sum of matrices", SIAM Review 23, pp. 53-60 doi:10.1137/1023004 [1].
  2. ^ Kurt S. Riedel, "A Sherman–Morrison–Woodbury Identity for Rank Augmenting Matrices with Application to Centering", SIAM Journal on Matrix Analysis and Applications, 13 (1992)659-662, doi:10.1137/0613040 preprint MR1152773
  3. ^ Gilbert Strang (2003). Introduction to Linear Algebra (3rd ed.). Wellesley-Cambridge Press: Wellesley, MA. ISBN 0-9614088-9-8.