Jump to content

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Magic links bot (talk | contribs) at 08:45, 21 June 2017 (Replace magic links with templates per local RfC and MediaWiki RfC). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

CpRuCl(PPh3)2
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.154.457 Edit this at Wikidata
  • InChI=1S/2C18H15P.C5H5.ClH.Ru/c2*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;1-2-4-5-3-1;;/h2*1-15H;1-3H,4H2;1H;/q;;-1;;+2/p-1 ☒N
    Key: WGQMSPWAXIDKEY-UHFFFAOYSA-M ☒N
  • InChI=1/2C18H15P.C5H5.ClH.Ru/c2*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;1-2-4-5-3-1;;/h2*1-15H;1-3H,4H2;1H;/q;;-1;;+2/p-1
    Key: WGQMSPWAXIDKEY-REWHXWOFAY
  • c1ccc(cc1)P(c2ccccc2)c3ccccc3.c1ccc(cc1)P(c2ccccc2)c3ccccc3.C1C=CC=[C-]1.[Cl-].[Ru+2]
Properties
C41H35ClP2Ru
Molar mass 726.19 g/mol
Appearance Orange solid
Melting point 135 °C (275 °F; 408 K)
Insoluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium is the organoruthenium half-sandwich compound with formula RuCl(PPh3)2(C5H5). It as an air-stable orange crystalline solid that is used in a variety of organometallic synthetic and catalytic transformations. The compound has idealized Cs symmetry. It is soluble in chloroform, dichloromethane, and acetone.

Preparation

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium was first reported in 1969 when it was prepared by reacting dichlorotris(triphenylphosphine)ruthenium(II) with cyclopentadiene.[1]

RuCl2(PPh3)3 + C5H6 → RuCl(PPh3)3(C5H5) + HCl

It is prepared by heating a mixture of ruthenium(III) chloride, triphenylphosphine, and cyclopentadiene in ethanol.[2]

Reactions

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(II) undergoes a variety of reactions often by involving substitution of the chloride. With phenylacetylene it gives the phenyl vinylidene complex:

(C5H5)(PPh3)2RuCl + HC2Ph + NH4[PF6] → [Ru(C:CHPh)(PPh3)2(C5H5)][PF6] + NH4Cl

Displacement of onw PPh3 by carbon monoxide affords a chiral compound.[3]

(C5H5)(PPh3)2RuCl + CO → (C5H5)(PPh3)(CO)RuCl + PPh3

The compound can also be converted into the hydride:[4]

(C5H5)(PPh3)2RuCl + NaOMe → (C5H5)(PPh3)2RuH + NaCl + CH2O

A related complex is tris(acetonitrile)cyclopentadienylruthenium hexafluorophosphate, which has three labile MeCN ligands.

Applications

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium(II) serves as a catalyst for a variety of specialized reactions. For example, in the presence of NH4PF6 it catalyzes the isomerisation of allylic alcohols to the corresponding saturated carbonyls.[5]

References

  1. ^ Gilbert JD, Wilkinson, G (1969). "New Complexes of Ruthenium(II) with Triphenylphosphine and other Ligands". J. Chem. Soc.: 1749. doi:10.1039/J19690001749.
  2. ^ Bruce, M. I.; Hamiester, C., Swincer, A. G., Wallis, R. C. "Some η5-Cyclopentadienylruthenium(II) Complexes Containing Triphenylphosphine" Inorganic Syntheses 1982, volume 21, pp 78-82. doi:10.1002/9780470132524
  3. ^ Blackmore T, Bruce MI, Stone, F. G. A. (1971). "Some New η-Cyclopentadienyltuthenium Complexes". J. Chem. Soc., A: 2376–2382. doi:10.1039/J19710002376.
  4. ^ Wilczewski, T.; Bochenska, M.; Biernat, J. (1981). "Cyclobentadienyl-Ruthenium Complexes". J. Organomet. Chem. 215: 87. doi:10.1016/S0022-328X(00)84619-7. {{cite journal}}: Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  5. ^ Murahashi, Shun-Ichi. "Ruthenium in Organic Synthesis" (2006) Wiley-VCH: Weinheim. ISBN 978-3-527-30692-3