Jump to content

Chlorobenzene

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by DMacks (talk | contribs) at 15:43, 23 August 2016 (Reverted to revision 719033828 by BG19bot (talk): Too many problems. (TW)). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Chlorobenzene
Names
IUPAC name
chlorobenzene
Other names
benzene chloride
monochlorobenzene
Phenyl chloride
Chlorobenzol
MCB
Identifiers
3D model (JSmol)
Abbreviations PhCl
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.299 Edit this at Wikidata
KEGG
RTECS number
  • CZ0175000
UNII
  • InChI=1S/C6H5Cl/c7-6-4-2-1-3-5-6/h1-5H checkY
    Key: MVPPADPHJFYWMZ-UHFFFAOYSA-N checkY
  • InChI=1/C6H5Cl/c7-6-4-2-1-3-5-6/h1-5H
    Key: MVPPADPHJFYWMZ-UHFFFAOYAG
  • c1ccc(cc1)Cl
Properties
C6H5Cl
Molar mass 112.56 g/mol
Appearance colorless liquid
Odor almond-like[1]
Density 1.11 g/cm³, liquid
Melting point −45 °C (−49 °F; 228 K)
Boiling point 131 °C (268 °F; 404 K)
0.5 g l−1 in water at 20 °C
Solubility in other solvents soluble in most organic solvents
Vapor pressure 9 mmHg[1]
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
3
0
Flash point 29 °C (84 °F; 302 K)
Explosive limits 1.3%-9.6%[1]
Lethal dose or concentration (LD, LC):
2290 mg/kg (rat, oral)
2250 mg/kg (rabbit, oral)
2300 mg/kg (mouse, oral)
2250 mg/kg (guinea pig, oral)[2]
8000 ppm (cat, 3 hr)[2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 75 ppm (350 mg/m3)[1]
REL (Recommended)
none[1]
IDLH (Immediate danger)
1000 ppm[1]
Related compounds
Related Halobenzenes
Fluorobenzene
Bromobenzene
Iodobenzene
Related compounds
benzene
1,4-dichlorobenzene
Supplementary data page
Chlorobenzene (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Chlorobenzene is an aromatic organic compound with the chemical formula C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.[3]

Uses

Historical

The major use of chlorobenzene is as an intermediate in the production of commodities such as herbicides, dyestuffs, and rubber. Chlorobenzene is also used as a high-boiling solvent in many industrial applications as well as in the laboratory.[4] Chlorobenzene is nitrated on a large scale to give a mixture of 2-nitrochlorobenzene and 4-nitrochlorobenzene , which are separated. These mononitrochlorobenzenes are converted to related 2-nitrophenol, 2-nitroanisole, bis(2-nitrophenyl)disulfide, and 2-nitroaniline by nucleophilic displacement of the chloride, with respectively sodium hydroxide, sodium methoxide, sodium disulfide, and ammonia. The conversions of the 4-nitro derivative are similar.[5]

Chlorobenzene once was used in the manufacture of certain pesticides, most notably DDT by reaction with chloral (trichloroacetaldehyde), but this application has declined with the diminished use of DDT. At one time, chlorobenzene was the main precursor for the manufacture of phenol:[6]

C6H5Cl + NaOH → C6H5OH + NaCl
The reaction also has a byproduct of salt.

Production

It was first described in 1851. Chlorobenzene is manufactured by chlorination of benzene in the presence of a catalytic amount of Lewis acid such as ferric chloride, sulfur dichloride, and anhydrous aluminium chloride:[3]

The catalyst enhances the electrophilicity of the chlorine. Because chlorine is electronegative, C6H5Cl exhibits somewhat decreased susceptibility to further chlorination. Industrially the reaction is conducted as a continuous process to minimize the formation of dichlorobenzenes.

Laboratory routes

Chlorobenzene can be produced by from aniline via benzenediazonium chloride, the route being known as the Sandmeyer reaction.

Safety

Chlorobenzene exhibits "low to moderate" toxicity as indicated by its LD50 of 2.9 g/kg.[4] The Occupational Safety and Health Administration has set a permissible exposure limit at 75 ppm (350 mg/m3) over an eight-hour time-weighted average for workers handling chlorobenzene.[7]

Toxicology and biodegradation

Chlorobenzene can persist in soil for several months, in air for about 3.5 days, and in water for less than one day. Humans may be exposed to this agent via breathing contaminated air (primarily via occupational exposure), eating contaminated food or water, or by coming into contact with contaminated soil (typically near hazardous waste sites). However, because it has only been found at 97 out of 1,177 NPL hazardous waste sites, it is not considered a widespread environmental contaminant. The bacterium Rhodococcus phenolicus degrades chlorobenzene as sole carbon sources.[8]

Upon entering the body, typically via contaminated air, chlorobenzene is excreted both via the lungs and the urinary system.

On other planets

In 2015, the SAM science team announced that the Curiosity rover reported evidence of higher concentrations of chlorobenzene in a sedimentary rock, named "Cumberland", on Mars.[9] The team speculated that the chlorobenzene might have been produced when the sample was heated in the instrument sampling chamber. The heating would have triggered a reaction of organics in the Martian soil with perchlorate known to be present in the Martian soil.

Comparison of Organics in Martian rocks - Chlorobenzene levels were much higher in the "Cumberland" rock sample.
Detection of Organics in the "Cumberland" rock sample.
Spectral Analysis (SAM) of "Cumberland" rock.

References

  1. ^ a b c d e f NIOSH Pocket Guide to Chemical Hazards. "#0121". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ a b "Chlorobenzene". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^ a b U. Beck, E. Löser "Chlorinated Benzenes and other Nucleus-Chlorinated Aromatic Hydrocarbons" Ullmann's Encyclopedia of Industrial Chemistry, 2012, Wiley-VCH, Weinheim. doi:10.1002/14356007.o06_o03
  4. ^ a b Rossberg, Manfred; Lendle, Wilhelm; Pfleiderer, Gerhard; Tögel, Adolf; Dreher, Eberhard-Ludwig; Langer, Ernst; Rassaerts, Heinz; Kleinschmidt, Peter; Strack, Heinz; Cook, Richard; Beck, Uwe; Lipper, Karl-August; Torkelson, Theodore R.; Löser, Eckhard; Beutel, Klaus K.; Mann, Trevor (2006). "Ullmann's Encyclopedia of Industrial Chemistry - Chlorinated Hydrocarbons". doi:10.1002/14356007.a06_233.pub2. ISBN 3527306730. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ Booth, Gerald (2000). "Ullmann's Encyclopedia of Industrial Chemistry - Nitro Compounds, Aromatic". doi:10.1002/14356007.a17_411. ISBN 3527306730. {{cite journal}}: Cite journal requires |journal= (help)
  6. ^ Weber, Manfred; Weber, Markus; Kleine-Boymann, Michael (2004). "Ullmann's Encyclopedia of Industrial Chemistry - Phenol". doi:10.1002/14356007.a19_299.pub2. ISBN 3527306730. {{cite journal}}: Cite journal requires |journal= (help)
  7. ^ CDC - NIOSH Pocket Guide to Chemical Hazards
  8. ^ Rehfuss, M.; Urban, J. (2005). "Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources". Systematic and Applied Microbiology. 28 (8): 695–701. doi:10.1016/j.syapm.2005.05.011. PMID 16261859. Erratum: Rehfuss, M. (2006). "Erratum to "Rhodococcus phenolicus sp. nov., a novel bioprocessor isolated actinomycete with the ability to degrade chlorobenzene, dichlorobenzene and phenol as sole carbon sources" [Systematic and Applied Microbiology 28 (2005) 695–701]". Systematic and Applied Microbiology. 29 (2): 182–110. doi:10.1016/j.syapm.2005.11.005.
  9. ^ Freissinet, C., et al. "Organic molecules in the sheepbed mudstone, gale crater, mars." Journal of Geophysical Research: Planets 120.3 (2015): 495-514.