Circle packing in a circle

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Reggio1971 (talk | contribs) at 09:32, 25 January 2014. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle.

Minimum solutions (in case several minimal solutions have been shown to exist, only one variant appears in the table):[1]

Number of
unit circles
Enclosing
circle radius
Density Optimality Diagram
1 1 1.0000 Trivially optimal.
2 2 0.5000 Trivially optimal.
3
≈ 2.154...
0.6466... Trivially optimal.
4
≈ 2.414...
0.6864... Trivially optimal.
5
≈ 2.701...
0.6854... Proved optimal
by Graham in 1968.[2]
6 3 0.6667... Proved optimal
by Graham in 1968.[2]
7 3 0.7778... Proved optimal
by Graham in 1968.[2]
8
≈ 3.304...
0.7328... Proved optimal
by Pirl in 1969.[3]
9
≈ 3.613...
0.6895... Proved optimal
by Pirl in 1969.[3]
10 3.813... 0.6878... Proved optimal
by Pirl in 1969.[3]
11
≈ 3.923...
0.7148... Proved optimal
by Melissen in 1994.[4]
12 4.029... 0.7392... Proved optimal
by Fodor in 2000.[5]
13
≈4.236...
0.7245... Proved optimal
by Fodor in 2003.[6]
14 4.328... 0.7474... Conjectured optimal.[7]
15 4.521... 0.7339... Conjectured optimal.[7]
16 4.615... 0.7512... Conjectured optimal.[7]
17 4.792... 0.7403... Conjectured optimal.[7]
18
≈ 4.863...
0.7611... Conjectured optimal.[7]
19
≈ 4.863...
0.8034... Proved optimal
by Fodor in 1999.[8]
20 5.122... 0.7623... Conjectured optimal.[7]

See also

References

  1. ^ Erich Friedman, Circles in Circles on Erich's Packing Center
  2. ^ a b c R.L. Graham, Sets of points with given minimum separation (Solution to Problem El921), Amer. Math. Monthly 75 (1968) 192-193.
  3. ^ a b c U. Pirl, Der Mindestabstand von n in der Einheitskreisscheibe gelegenen Punkten, Mathematische Nachrichten 40 (1969) 111-124.
  4. ^ H. Melissen, Densest packing of eleven congruent circles in a circle, Geometriae Dedicata 50 (1994) 15-25.
  5. ^ F. Fodor, The Densest Packing of 12 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 41 (2000) ?, 401–409.
  6. ^ F. Fodor, The Densest Packing of 13 Congruent Circles in a Circle, Beiträge zur Algebra und Geometrie, Contributions to Algebra and Geometry 44 (2003) 2, 431–440.
  7. ^ a b c d e f Graham RL, Lubachevsky BD, Nurmela KJ,Ostergard PRJ. Dense packings of congruent circles in a circle. Discrete Math 1998;181:139–154.
  8. ^ F. Fodor, The Densest Packing of 19 Congruent Circles in a Circle, Geom. Dedicata 74 (1999), 139–145.

External links