Jump to content

Cover (algebra)

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Sct72 (talk | contribs) at 21:30, 23 April 2016 (_ WP:FIX). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In abstract algebra, a cover is one instance of some mathematical structure mapping onto another instance, such as a group (trivially) covering a subgroup. This should not be confused with the concept of a cover in topology.

When some object X is said to cover another object Y, the cover is given by some surjective and structure-preserving map f : XY. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In order to be interesting, the cover is usually endowed with additional properties, which are highly dependent on the context.

Examples

A classic result in semigroup theory due to D. B. McAlister states that every inverse semigroup has an E-unitary cover; besides being surjective, the homomorphism in this case is also idempotent separating, meaning that in its kernel an idempotent and non-idempotent never belong to the same equivalence class.; something slightly stronger has actually be shown for inverse semigroups: every inverse semigroup admits an F-inverse cover.[1] McAlister's covering theorem generalizes to orthodox semigroups: every orthodox semigroup has a unitary cover.[2]

Examples from other areas of algebra include the Frattini cover of a profinite group[3] and the universal cover of a Lie group.

Modules

If F is some family of modules over some ring R, then an F-cover of a module M is a homomorphism XM with the following properties:

  • X is in the family F
  • XM is surjective
  • Any surjective map from a module in the family F to M factors through X
  • Any endomorphism of X commuting with the map to M is an automorphism.

In general an F-cover of M need not exist, but if it does exist then it is unique up to (non-unique) isomorphism.

Examples include:

See also

Notes

  1. ^ Lawson p. 230
  2. ^ Grilett p. 360
  3. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd revised ed.). Springer-Verlag. p. 508. ISBN 978-3-540-77269-9. Zbl 1145.12001.

References